PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2072.
Published online 2009 August 8. doi:  10.1107/S1600536809029900
PMCID: PMC2969861

(1Z)-1-(2,4-Dichloro­phen­yl)ethan-1-one semicarbazone

Abstract

In the title compound, C9H9Cl2N3O, the semicarbazone group is approximately planar, with an r.m.s deviation from the mean plane of 0.011 (2) Å. The dihedral angle between the least-squares planes through the semicarbazone group and the benzene ring is 38.76 (9)°. The crystal structure is further stabilized by N—H(...)O and C—H(...)O hydrogen bonding.

Related literature

For applications of semicarbazone derivatives, see: Warren et al. (1977 [triangle]); Chandra & Gupta (2005 [triangle]); Jain et al. (2002 [triangle]); Pilgram (1978 [triangle]); Yogeeswari et al. (2004 [triangle]); For semicarbazide preparations, see: Furniss et al. (1978 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2072-scheme1.jpg

Experimental

Crystal data

  • C9H9Cl2N3O
  • M r = 246.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2072-efi2.jpg
  • a = 37.8079 (17) Å
  • b = 3.8097 (2) Å
  • c = 14.4920 (7) Å
  • β = 98.852 (2)°
  • V = 2062.52 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.60 mm−1
  • T = 100 K
  • 0.42 × 0.14 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.707, T max = 0.974
  • 32124 measured reflections
  • 4202 independent reflections
  • 3654 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.192
  • S = 1.11
  • 4202 reflections
  • 149 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 3.37 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029900/bq2153sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029900/bq2153Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. They find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). Keeping in view of their biological importance, we hereby reporting crystal structure of the semicarbazone of commercial importance.

The semicarbazone group (Fig. 1) (C9/C6/C7/N1/N2/C8/O1/N3) is approximately planar, with an r.m.s deviation of 0.011 (2)Å for atom N1, while the dihedral angle between the least-squares plane through the semicarbazone group and the benzene ring is 38.76 (9)°. The molecules are linked via N—H···O hydrogen bonds to generate R22(8) ring motifs (Bernstein et al. 1995). These motifs are further connected through C—H···O hydrogen bonds to form a one-dimensional chain along the [0 1 0] direction (Fig. 2).

Experimental

3.16 g (28.3 mmol) of semicarbazide hydrochloride and 2.83 g (34.5 mmol) of crystallized sodium acetate was dissolved in 25 ml of water (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. (5.0 g, 26.5 mmol) of 2,4-dichloroacetophenone in 25 ml of ethanol was then added and the mixture stirred well for 6 h. The separated semicarbazone was filtered, washed with chilled water and recrystallized from an ethanol-DMF mixture. Yield was found to be 5.23 g, 86.02%. M.p. 501–503 K.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.85 (3)–0.91 (3) Å] and allowed to refine freely.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
An one-dimensional chain of (I) with R22(8) ring motifs along the [010] direction. Dashed lines indicate the hydrogen bonding.

Crystal data

C9H9Cl2N3OF(000) = 1008
Mr = 246.09Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9961 reflections
a = 37.8079 (17) Åθ = 2.9–34.0°
b = 3.8097 (2) ŵ = 0.60 mm1
c = 14.4920 (7) ÅT = 100 K
β = 98.852 (2)°Plate, colorless
V = 2062.52 (17) Å30.42 × 0.14 × 0.04 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4202 independent reflections
Radiation source: fine-focus sealed tube3654 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 34.1°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −59→58
Tmin = 0.707, Tmax = 0.974k = −5→5
32124 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.1176P)2 + 5.115P] where P = (Fo2 + 2Fc2)/3
4202 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 3.37 e Å3
0 restraintsΔρmin = −0.82 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.254197 (12)1.14825 (12)0.14159 (3)0.01486 (13)
Cl20.149699 (12)0.64254 (12)−0.11406 (3)0.01413 (13)
O1−0.00572 (4)0.4635 (5)0.11828 (10)0.0162 (3)
N10.08094 (4)0.7191 (5)0.08948 (11)0.0127 (3)
N20.04458 (4)0.6666 (5)0.06771 (12)0.0141 (3)
N30.04484 (5)0.5433 (7)0.22395 (13)0.0222 (4)
C10.14889 (5)1.0482 (6)0.14140 (13)0.0132 (3)
H1A0.13271.09540.18190.016*
C20.18500 (5)1.1187 (5)0.17051 (14)0.0132 (3)
H2A0.19281.21310.22930.016*
C30.20913 (5)1.0451 (5)0.10974 (13)0.0120 (3)
C40.19805 (5)0.9013 (5)0.02261 (13)0.0124 (3)
H4A0.21450.8508−0.01720.015*
C50.16165 (5)0.8336 (5)−0.00436 (13)0.0112 (3)
C60.13617 (5)0.9086 (5)0.05322 (13)0.0112 (3)
C70.09697 (5)0.8539 (5)0.02541 (13)0.0116 (3)
C80.02647 (5)0.5559 (6)0.13727 (14)0.0152 (3)
C90.07833 (5)0.9765 (5)−0.06811 (13)0.0123 (3)
H9A0.05711.1034−0.06010.018*
H9B0.07200.7772−0.10780.018*
H9C0.09401.1272−0.09620.018*
H1N20.0320 (9)0.660 (8)0.014 (2)0.016 (7)*
H1N30.0663 (10)0.636 (10)0.231 (3)0.028 (9)*
H2N30.0324 (10)0.484 (10)0.262 (3)0.028 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0092 (2)0.0180 (2)0.0168 (2)−0.00196 (13)0.00036 (15)−0.00011 (14)
Cl20.0141 (2)0.0179 (2)0.0105 (2)−0.00169 (14)0.00232 (15)−0.00251 (14)
O10.0090 (6)0.0283 (8)0.0111 (6)−0.0027 (5)0.0010 (5)0.0002 (5)
N10.0076 (6)0.0192 (7)0.0111 (7)−0.0008 (5)0.0009 (5)0.0005 (5)
N20.0084 (6)0.0238 (8)0.0097 (7)−0.0026 (5)0.0005 (5)0.0012 (5)
N30.0114 (7)0.0461 (12)0.0088 (7)−0.0060 (8)0.0002 (6)0.0043 (7)
C10.0100 (7)0.0191 (8)0.0104 (7)−0.0019 (6)0.0016 (6)−0.0020 (6)
C20.0114 (7)0.0163 (8)0.0114 (7)−0.0007 (6)0.0005 (6)−0.0018 (6)
C30.0082 (7)0.0140 (8)0.0135 (8)−0.0007 (6)0.0006 (6)0.0011 (6)
C40.0119 (7)0.0126 (7)0.0130 (8)−0.0005 (6)0.0027 (6)−0.0004 (6)
C50.0113 (7)0.0127 (7)0.0097 (7)0.0001 (5)0.0021 (6)−0.0005 (5)
C60.0104 (7)0.0130 (7)0.0101 (7)−0.0007 (6)0.0015 (5)0.0013 (6)
C70.0099 (7)0.0141 (8)0.0105 (7)−0.0007 (5)0.0009 (6)−0.0003 (5)
C80.0109 (7)0.0234 (9)0.0116 (8)−0.0011 (7)0.0025 (6)0.0017 (7)
C90.0107 (7)0.0140 (8)0.0114 (7)−0.0011 (6)−0.0010 (6)0.0017 (6)

Geometric parameters (Å, °)

Cl1—C31.7403 (19)C1—H1A0.9300
Cl2—C51.7436 (19)C2—C31.391 (3)
O1—C81.256 (2)C2—H2A0.9300
N1—C71.291 (2)C3—C41.381 (3)
N1—N21.377 (2)C4—C51.395 (3)
N2—C81.369 (2)C4—H4A0.9300
N2—H1N20.85 (3)C5—C61.398 (3)
N3—C81.339 (3)C6—C71.489 (3)
N3—H1N30.88 (4)C7—C91.503 (3)
N3—H2N30.81 (4)C9—H9A0.9600
C1—C21.392 (3)C9—H9B0.9600
C1—C61.399 (3)C9—H9C0.9600
C7—N1—N2117.12 (16)C4—C5—C6122.38 (17)
C8—N2—N1118.08 (16)C4—C5—Cl2116.02 (14)
C8—N2—H1N2113 (2)C6—C5—Cl2121.59 (15)
N1—N2—H1N2128 (2)C5—C6—C1116.83 (17)
C8—N3—H1N3115 (2)C5—C6—C7123.95 (17)
C8—N3—H2N3112 (3)C1—C6—C7119.21 (16)
H1N3—N3—H2N3131 (4)N1—C7—C6114.76 (16)
C2—C1—C6122.24 (17)N1—C7—C9124.43 (17)
C2—C1—H1A118.9C6—C7—C9120.65 (16)
C6—C1—H1A118.9O1—C8—N3122.71 (18)
C3—C2—C1118.53 (17)O1—C8—N2120.16 (18)
C3—C2—H2A120.7N3—C8—N2117.11 (18)
C1—C2—H2A120.7C7—C9—H9A109.5
C4—C3—C2121.52 (17)C7—C9—H9B109.5
C4—C3—Cl1118.62 (14)H9A—C9—H9B109.5
C2—C3—Cl1119.83 (15)C7—C9—H9C109.5
C3—C4—C5118.48 (17)H9A—C9—H9C109.5
C3—C4—H4A120.8H9B—C9—H9C109.5
C5—C4—H4A120.8
C7—N1—N2—C8−173.82 (19)Cl2—C5—C6—C7−3.6 (3)
C6—C1—C2—C3−0.4 (3)C2—C1—C6—C51.6 (3)
C1—C2—C3—C4−0.7 (3)C2—C1—C6—C7−177.46 (18)
C1—C2—C3—Cl1177.08 (15)N2—N1—C7—C6179.31 (17)
C2—C3—C4—C50.7 (3)N2—N1—C7—C94.0 (3)
Cl1—C3—C4—C5−177.15 (14)C5—C6—C7—N1137.72 (19)
C3—C4—C5—C60.5 (3)C1—C6—C7—N1−43.3 (3)
C3—C4—C5—Cl2−178.54 (15)C5—C6—C7—C9−46.8 (3)
C4—C5—C6—C1−1.6 (3)C1—C6—C7—C9132.2 (2)
Cl2—C5—C6—C1177.39 (15)N1—N2—C8—O1−171.2 (2)
C4—C5—C6—C7177.37 (18)N1—N2—C8—N37.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.85 (3)2.07 (3)2.907 (2)168 (3)
N3—H2N3···O1ii0.81 (4)2.13 (4)2.924 (2)164 (4)
C9—H9A···O1iii0.962.593.465 (2)152

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2153).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. [PubMed]
  • Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel’s Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.
  • Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym.51, 101–110.
  • Pilgram, K. H. G. (1978). US Patent No. 4 108 399.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem.20, 1520–1521. [PubMed]
  • Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography