PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2283.
Published online 2009 August 29. doi:  10.1107/S1600536809033716
PMCID: PMC2969857

[5-(2-Fur­yl)-6-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridin-8-yl](phen­yl)methanone

Abstract

In the title compound, C18H17N3O4, the furyl and phenyl rings are inclined at almost right angles [85.77 (7) and 63.25 (7)°, respectively] to the central imidazo[1,2-a]pyridinyl unit. The structure displays both inter- and intra­molecular N—H(...)O hydrogen bonding.

Related literature

For cyclic 1,1-enediamines as inter­mediates for the construction of heterocyclic compounds, see: Yu et al. (2006 [triangle]); Yaqub et al. (2008 [triangle]); Wang et al. (1999 [triangle]). For related structures, see: Yu et al. (2007 [triangle]); Yaqub et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2283-scheme1.jpg

Experimental

Crystal data

  • C18H17N3O4
  • M r = 339.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2283-efi1.jpg
  • a = 11.980 (2) Å
  • b = 15.047 (3) Å
  • c = 17.932 (4) Å
  • β = 101.94 (3)°
  • V = 3162.7 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.45 × 0.33 × 0.32 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.955, T max = 0.968
  • 5401 measured reflections
  • 2801 independent reflections
  • 2426 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.128
  • S = 1.14
  • 2801 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033716/pv2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033716/pv2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Institute of Chemistry Chinese Academy of Science, Beijing, China for providing X-ray single-crystal facilities and the Higher Education Commission, Islamabad, Pakistan for providing financial support.

supplementary crystallographic information

Comment

The significance of cyclic 1,1-enediamines known as heterocyclic ketene aminals (HKAs) is obvious as a building block in many synthetic operations especially as intermediates for the construction of novel heterocyclic compound (Yaqub et al., 2008; Yu et al., 2006). The condensation through β-carbon and secondary nitrogen with bis-electrophile to form heterocyclic ring is one of the most favorable features of HKAs, (Yaqub et al., 2009; Yu, et al., 2007; Wang et al., 1999) which was utilized to synthesize the title compound (I) by treating nitro derivative of Baylis-Hillman acetates with five membered analogue of heterocyclic ketene aminal. In this paper, we describe the crystal structure of (I).

In the title compound (Fig. 1), the pyridyl ring of the nitroimidazo-pyridinyl moiety adopts a half-chair conformation with C4 lying 0.666 (3) Å out of the plane formed by the atoms N1/N2/C1/C2/C3/C5/C6/C7; N2 showing the maximum deviation of 0.069 (2) Å from this plane. The mean-planes of the furanyl and benzyl rings lie at angles 85.77 (7) and 0.63.25 (7)°, respectively, with respect to the mean-plane formed by the atoms N1/N2/C1/C2/C3/C5/C6/C7 of the nitroimidazo-pyridinyl moiety. The structure is stabilized by both inter- and intra-molecular hydrogen bonding of the type N—H···O (details have been provided in Table 1).

Experimental

Heterocyclic ketene aminal (0.13 g, 0.71 mmol) and (E)-2-nitro-3-(2-furanyl)allylacetate (0.15 g, 0.71 mmol) were stirred in 30 ml of dichloromethane at 273 K for one hour, followed by stirring at room temperature for 6 h (Scheme 2). Solvent was evaporated and residue was passed through short chromatographic column. The elution was carried out by petroleum ether: ethyl acetate (4:1) mixture to get the title compound (I) as a light yellow solid. The single crystals were grown in dichloromethane - petroleum ether (1:5) system at room temperature by slow evaporation. Yield: 75% (0.18 g), m.p. 440–441 K (lit. m. p. 441–442 K) (Yaqub et al., 2008).

Refinement

The H atoms were positioned geometrically and refined in riding mode, with N–H = 0.88 Å, C—H = 0.95, 0.99 and 1.00 Å, for aryl, methylene and methine type H-atoms and Uiso(H) = 1.2 Ueq(parent atoms).

Figures

Fig. 1.
The molecular structure of the title compound.
Fig. 2.
The formation of the title compound.

Crystal data

C18H17N3O4F(000) = 1424
Mr = 339.35Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 989 reflections
a = 11.980 (2) Åθ = 2.2–27.5°
b = 15.047 (3) ŵ = 0.10 mm1
c = 17.932 (4) ÅT = 173 K
β = 101.94 (3)°Block, yellow
V = 3162.7 (11) Å30.45 × 0.33 × 0.32 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer2801 independent reflections
Radiation source: rotating anode2426 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −14→14
Tmin = 0.955, Tmax = 0.968k = −17→17
5401 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0499P)2 + 3.4672P] where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.43109 (14)0.20626 (10)0.91996 (10)0.0384 (4)
O20.2016 (2)0.3319 (2)0.63070 (12)0.0835 (8)
O30.12099 (18)0.35426 (18)0.72302 (12)0.0722 (7)
O40.11567 (13)0.00988 (10)0.71141 (9)0.0319 (4)
N10.10262 (16)0.11596 (13)0.83171 (10)0.0327 (5)
H1A0.07800.06260.81630.039*
N20.21072 (15)0.23408 (12)0.84736 (11)0.0302 (5)
N30.20184 (17)0.32982 (14)0.69714 (12)0.0370 (5)
C10.05883 (19)0.16761 (16)0.88815 (13)0.0329 (5)
H1B0.06520.13410.93630.039*
H1C−0.02190.18440.86890.039*
C20.1352 (2)0.2487 (2)0.89931 (15)0.0473 (7)
H2A0.09020.30380.88630.057*
H2B0.17850.25270.95260.057*
C30.18456 (17)0.15910 (14)0.80613 (12)0.0244 (5)
C70.29353 (18)0.29889 (14)0.83329 (13)0.0280 (5)
H7A0.26460.35960.84190.034*
C40.30665 (18)0.29262 (15)0.75038 (13)0.0289 (5)
H4A0.37420.32900.74460.035*
C50.32660 (18)0.19731 (14)0.72796 (13)0.0286 (5)
H5A0.32650.19490.67280.034*
H5B0.40240.17730.75600.034*
C60.23556 (17)0.13503 (14)0.74538 (12)0.0247 (5)
C80.40885 (18)0.28698 (14)0.88525 (12)0.0254 (5)
C90.5402 (2)0.21114 (16)0.96169 (14)0.0359 (6)
H9A0.57810.16440.99250.043*
C100.58593 (19)0.28997 (15)0.95339 (13)0.0312 (5)
H10A0.66070.30940.97610.037*
C110.50011 (19)0.33953 (15)0.90356 (13)0.0318 (5)
H11A0.50670.39870.88660.038*
C120.19701 (17)0.05876 (14)0.70164 (12)0.0240 (5)
C130.25482 (18)0.03347 (13)0.63770 (12)0.0243 (5)
C140.37074 (19)0.01371 (15)0.65132 (14)0.0327 (5)
H14A0.41590.02100.70110.039*
C150.4210 (2)−0.01643 (16)0.59321 (16)0.0402 (6)
H15A0.4997−0.03140.60360.048*
C160.3569 (2)−0.02476 (15)0.52020 (15)0.0396 (6)
H16A0.3916−0.04490.48020.047*
C170.2425 (2)−0.00372 (16)0.50545 (14)0.0360 (6)
H17A0.1987−0.00800.45490.043*
C180.19096 (19)0.02370 (14)0.56414 (13)0.0296 (5)
H18A0.11140.03590.55390.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0377 (9)0.0257 (8)0.0469 (11)−0.0042 (7)−0.0025 (8)0.0091 (7)
O20.0725 (15)0.145 (2)0.0326 (12)0.0368 (16)0.0095 (10)0.0255 (13)
O30.0543 (13)0.109 (2)0.0460 (13)0.0391 (13)−0.0055 (10)−0.0096 (12)
O40.0336 (9)0.0286 (8)0.0354 (9)−0.0075 (7)0.0116 (7)−0.0056 (7)
N10.0386 (11)0.0359 (11)0.0264 (10)−0.0111 (9)0.0133 (9)−0.0063 (8)
N20.0266 (10)0.0309 (10)0.0345 (11)−0.0049 (8)0.0098 (8)−0.0099 (8)
N30.0362 (11)0.0383 (12)0.0333 (12)−0.0004 (9)−0.0006 (9)−0.0010 (9)
C10.0270 (11)0.0424 (13)0.0301 (12)0.0030 (10)0.0077 (9)−0.0023 (10)
C20.0517 (16)0.0595 (18)0.0352 (15)−0.0184 (14)0.0196 (12)−0.0203 (13)
C30.0224 (10)0.0259 (11)0.0223 (11)0.0008 (9)−0.0013 (8)−0.0001 (9)
C70.0284 (11)0.0224 (11)0.0315 (12)−0.0015 (9)0.0021 (9)−0.0052 (9)
C40.0260 (11)0.0277 (12)0.0309 (12)−0.0036 (9)0.0010 (9)−0.0002 (9)
C50.0269 (11)0.0302 (12)0.0294 (12)−0.0043 (9)0.0069 (9)−0.0038 (9)
C60.0229 (10)0.0274 (11)0.0236 (11)−0.0023 (8)0.0042 (9)−0.0018 (9)
C80.0313 (12)0.0212 (10)0.0239 (11)0.0008 (9)0.0064 (9)−0.0007 (9)
C90.0341 (13)0.0347 (13)0.0341 (14)0.0052 (10)−0.0038 (10)0.0043 (10)
C100.0277 (12)0.0322 (12)0.0314 (13)0.0004 (9)0.0010 (10)−0.0056 (10)
C110.0330 (12)0.0226 (11)0.0373 (13)−0.0044 (9)0.0013 (10)0.0009 (10)
C120.0232 (11)0.0233 (11)0.0247 (11)0.0016 (8)0.0032 (9)0.0025 (9)
C130.0285 (11)0.0174 (10)0.0278 (12)−0.0002 (8)0.0078 (9)−0.0013 (8)
C140.0286 (12)0.0327 (12)0.0360 (13)0.0024 (10)0.0049 (10)0.0049 (10)
C150.0364 (13)0.0335 (13)0.0562 (17)0.0082 (11)0.0226 (13)0.0089 (12)
C160.0561 (16)0.0248 (12)0.0469 (16)0.0038 (11)0.0316 (13)−0.0007 (11)
C170.0514 (15)0.0284 (12)0.0297 (13)−0.0041 (11)0.0118 (11)−0.0044 (10)
C180.0314 (12)0.0253 (11)0.0313 (13)0.0001 (9)0.0048 (10)−0.0014 (9)

Geometric parameters (Å, °)

O1—C81.366 (3)C5—C61.519 (3)
O1—C91.367 (3)C5—H5A0.9900
O2—N31.191 (3)C5—H5B0.9900
O3—N31.214 (3)C6—C121.413 (3)
O4—C121.262 (3)C8—C111.334 (3)
N1—C31.335 (3)C9—C101.328 (3)
N1—C11.457 (3)C9—H9A0.9500
N1—H1A0.8800C10—C111.425 (3)
N2—C31.350 (3)C10—H10A0.9500
N2—C21.443 (3)C11—H11A0.9500
N2—C71.450 (3)C12—C131.506 (3)
N3—C41.518 (3)C13—C181.389 (3)
C1—C21.513 (3)C13—C141.392 (3)
C1—H1B0.9900C14—C151.384 (3)
C1—H1C0.9900C14—H14A0.9500
C2—H2A0.9900C15—C161.380 (4)
C2—H2B0.9900C15—H15A0.9500
C3—C61.402 (3)C16—C171.378 (4)
C7—C81.509 (3)C16—H16A0.9500
C7—C41.530 (3)C17—C181.389 (3)
C7—H7A1.0000C17—H17A0.9500
C4—C51.522 (3)C18—H18A0.9500
C4—H4A1.0000
C8—O1—C9106.02 (17)C6—C5—H5B109.3
C3—N1—C1112.05 (19)C4—C5—H5B109.3
C3—N1—H1A124.0H5A—C5—H5B108.0
C1—N1—H1A124.0C3—C6—C12119.75 (19)
C3—N2—C2112.04 (18)C3—C6—C5116.57 (19)
C3—N2—C7123.81 (18)C12—C6—C5123.59 (19)
C2—N2—C7123.56 (19)C11—C8—O1110.01 (19)
O2—N3—O3122.5 (2)C11—C8—C7132.9 (2)
O2—N3—C4117.9 (2)O1—C8—C7117.03 (18)
O3—N3—C4119.5 (2)C10—C9—O1110.9 (2)
N1—C1—C2103.13 (18)C10—C9—H9A124.5
N1—C1—H1B111.1O1—C9—H9A124.5
C2—C1—H1B111.1C9—C10—C11106.0 (2)
N1—C1—H1C111.1C9—C10—H10A127.0
C2—C1—H1C111.1C11—C10—H10A127.0
H1B—C1—H1C109.1C8—C11—C10107.0 (2)
N2—C2—C1103.57 (19)C8—C11—H11A126.5
N2—C2—H2A111.0C10—C11—H11A126.5
C1—C2—H2A111.0O4—C12—C6124.7 (2)
N2—C2—H2B111.0O4—C12—C13116.65 (18)
C1—C2—H2B111.0C6—C12—C13118.62 (18)
H2A—C2—H2B109.0C18—C13—C14118.5 (2)
N1—C3—N2108.79 (19)C18—C13—C12120.01 (19)
N1—C3—C6127.7 (2)C14—C13—C12121.3 (2)
N2—C3—C6123.53 (19)C15—C14—C13120.8 (2)
N2—C7—C8112.63 (18)C15—C14—H14A119.6
N2—C7—C4109.83 (17)C13—C14—H14A119.6
C8—C7—C4109.13 (18)C16—C15—C14120.1 (2)
N2—C7—H7A108.4C16—C15—H15A120.0
C8—C7—H7A108.4C14—C15—H15A120.0
C4—C7—H7A108.4C17—C16—C15119.8 (2)
N3—C4—C5109.63 (18)C17—C16—H16A120.1
N3—C4—C7110.51 (18)C15—C16—H16A120.1
C5—C4—C7111.60 (18)C16—C17—C18120.2 (2)
N3—C4—H4A108.3C16—C17—H17A119.9
C5—C4—H4A108.3C18—C17—H17A119.9
C7—C4—H4A108.3C17—C18—C13120.5 (2)
C6—C5—C4111.62 (18)C17—C18—H18A119.8
C6—C5—H5A109.3C13—C18—H18A119.8
C4—C5—H5A109.3
C3—N1—C1—C2−4.9 (3)C4—C5—C6—C12148.1 (2)
C3—N2—C2—C13.0 (3)C9—O1—C8—C110.8 (3)
C7—N2—C2—C1174.5 (2)C9—O1—C8—C7178.42 (19)
N1—C1—C2—N21.0 (3)N2—C7—C8—C11−163.8 (2)
C1—N1—C3—N26.9 (3)C4—C7—C8—C1174.0 (3)
C1—N1—C3—C6−171.3 (2)N2—C7—C8—O119.2 (3)
C2—N2—C3—N1−6.2 (3)C4—C7—C8—O1−103.0 (2)
C7—N2—C3—N1−177.64 (19)C8—O1—C9—C10−0.9 (3)
C2—N2—C3—C6172.1 (2)O1—C9—C10—C110.6 (3)
C7—N2—C3—C60.7 (3)O1—C8—C11—C10−0.4 (3)
C3—N2—C7—C8−97.8 (2)C7—C8—C11—C10−177.5 (2)
C2—N2—C7—C891.7 (3)C9—C10—C11—C8−0.1 (3)
C3—N2—C7—C424.0 (3)C3—C6—C12—O42.1 (3)
C2—N2—C7—C4−146.4 (2)C5—C6—C12—O4−174.3 (2)
O2—N3—C4—C5−58.9 (3)C3—C6—C12—C13−178.84 (19)
O3—N3—C4—C5119.4 (3)C5—C6—C12—C134.7 (3)
O2—N3—C4—C7177.6 (2)O4—C12—C13—C1855.0 (3)
O3—N3—C4—C7−4.0 (3)C6—C12—C13—C18−124.1 (2)
N2—C7—C4—N372.3 (2)O4—C12—C13—C14−120.7 (2)
C8—C7—C4—N3−163.80 (17)C6—C12—C13—C1460.2 (3)
N2—C7—C4—C5−50.0 (2)C18—C13—C14—C15−1.1 (3)
C8—C7—C4—C573.9 (2)C12—C13—C14—C15174.7 (2)
N3—C4—C5—C6−69.8 (2)C13—C14—C15—C161.9 (4)
C7—C4—C5—C653.0 (2)C14—C15—C16—C17−0.6 (4)
N1—C3—C6—C122.7 (3)C15—C16—C17—C18−1.6 (4)
N2—C3—C6—C12−175.3 (2)C16—C17—C18—C132.5 (3)
N1—C3—C6—C5179.4 (2)C14—C13—C18—C17−1.1 (3)
N2—C3—C6—C51.4 (3)C12—C13—C18—C17−176.9 (2)
C4—C5—C6—C3−28.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.172.714 (2)119
N1—H1A···O4i0.882.403.025 (3)128

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2191).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, M.-X., Miao, W.-S., Cheng, Y. & Huang, Z.-T. (1999). Tetrahedron, 55, 14611–14622.
  • Yaqub, M., Shafiq, Z., Qureshi, A. M. & Najam-ul-Haq, M. (2009). Acta Cryst. E65, o1869.
  • Yaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357–1360.
  • Yu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett, pp. 1835–1840.
  • Yu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography