PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1083–m1084.
Published online 2009 August 19. doi:  10.1107/S1600536809031778
PMCID: PMC2969856

Aqua­bis(5-methyl­pyrazine-2-carboxyl­ato)zinc(II) trihydrate

Abstract

In the title compound, [Zn(C6H5N2O2)2(H2O)]·3H2O, the ZnII centre is five-coordinated by two O,N-bidentate Schiff base ligands and one O atom from a water mol­ecule in a slightly distorted square-pyramidal geometry. In the crystal, the complex and uncoordinated water mol­ecules are linked by O—H(...)O, O—H(...)N and C—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the mol­ecular architecture and biological activity of benzoic acid–metal complexes, see: Cheng et al. (2006 [triangle]); Yang et al. (2004 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1083-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H5N2O2)2(H2O)]·3H2O
  • M r = 411.67
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1083-efi1.jpg
  • a = 8.134 (4) Å
  • b = 10.492 (5) Å
  • c = 10.982 (5) Å
  • α = 66.61 (2)°
  • β = 81.85 (2)°
  • γ = 78.33 (2)°
  • V = 840.3 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.51 mm−1
  • T = 296 K
  • 0.32 × 0.28 × 0.23 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.644, T max = 0.723
  • 4392 measured reflections
  • 2923 independent reflections
  • 2539 reflections with I > 2σ(I)
  • R int = 0.018
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.109
  • S = 1.05
  • 2923 reflections
  • 260 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031778/hb5038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031778/hb5038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

supplementary crystallographic information

Comment

There has been much research interest in benzoic acid metal complexes due to their molecular architectures and biological activities (Cheng et al., 2006; Yang et al., 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The ZnII atom is five-coordinated by two O and two N atoms from the two Schiff base ligands and one O from the water molecule, forming a slightly distorted square pyramid coordination (Table 1). The mononuclear complex interacts with the solvent water molecules to form a three-dimensional network (Table 2).

Experimental

A mixture of 5-methylpyrazine-2-carboxylic acid (276 mg, 2 mmol) and Zn(NO3)2.6H2O (1 mmol, 271 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, colourless blocks of (I) were formed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

[Zn(C6H5N2O2)2(H2O)]·3H2OZ = 2
Mr = 411.67F(000) = 424
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.134 (4) ÅCell parameters from 25 reflections
b = 10.492 (5) Åθ = 9–12°
c = 10.982 (5) ŵ = 1.51 mm1
α = 66.61 (2)°T = 296 K
β = 81.85 (2)°Block, colourless
γ = 78.33 (2)°0.32 × 0.28 × 0.23 mm
V = 840.3 (7) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
graphiteθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = −9→9
Absorption correction: ψ scan (North et al., 1968)k = −12→12
Tmin = 0.644, Tmax = 0.723l = −13→13
4392 measured reflections3 standard reflections every 200 reflections
2923 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0629P)2 + 0.6023P] where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max = 0.016
260 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6126 (4)0.8388 (3)0.6598 (3)0.0398 (8)
C20.7345 (4)0.8625 (3)0.5379 (3)0.0328 (7)
C30.7920 (4)0.9875 (3)0.4653 (3)0.0402 (8)
H30.75511.06350.49120.048*
C40.9502 (4)0.8932 (3)0.3229 (3)0.0371 (7)
C50.8939 (4)0.7652 (3)0.3960 (3)0.0358 (7)
H50.93100.68910.37030.043*
C61.0683 (5)0.9107 (4)0.2018 (4)0.0555 (10)
H6A1.01630.98320.12570.083*
H6B1.09470.82370.18810.083*
H6C1.16990.93630.21390.083*
C70.6723 (4)0.3717 (3)0.5483 (3)0.0350 (7)
C80.5573 (4)0.3445 (3)0.6745 (3)0.0315 (7)
C90.4702 (4)0.2334 (3)0.7297 (3)0.0387 (7)
H90.48460.16730.69080.046*
C100.3477 (4)0.3130 (4)0.8926 (3)0.0381 (7)
C110.4392 (4)0.4242 (3)0.8389 (3)0.0362 (7)
H110.42810.48860.87930.043*
C120.2293 (5)0.2978 (4)1.0126 (4)0.0533 (10)
H12A0.11580.31460.98830.080*
H12B0.24210.36471.04870.080*
H12C0.25390.20421.07810.080*
H5A0.964 (4)0.540 (3)0.750 (3)0.040 (10)*
H7A0.070 (5)0.7757 (14)0.720 (4)0.056 (12)*
H8A0.406 (6)0.908 (4)0.855 (3)0.090 (18)*
H5B0.875 (4)0.438 (3)0.8366 (14)0.048 (11)*
H7B0.175 (4)0.675 (4)0.683 (3)0.076 (15)*
H8B0.329 (5)0.985 (2)0.929 (3)0.049 (12)*
H6D0.259 (6)0.734 (3)0.977 (4)0.088 (18)*
H6E0.183 (5)0.674 (4)0.915 (2)0.065 (14)*
N10.7865 (3)0.7518 (3)0.5033 (2)0.0317 (6)
N20.9005 (4)1.0029 (3)0.3579 (3)0.0417 (7)
N30.5426 (3)0.4391 (3)0.7298 (2)0.0318 (6)
N40.3644 (4)0.2175 (3)0.8390 (3)0.0405 (7)
O10.5584 (4)0.9371 (3)0.6954 (3)0.0624 (8)
O20.5775 (3)0.7154 (2)0.7156 (2)0.0423 (6)
O30.6850 (4)0.2940 (2)0.4880 (2)0.0514 (7)
O40.7438 (3)0.4786 (2)0.5142 (2)0.0394 (5)
O50.9020 (3)0.4833 (3)0.7568 (2)0.0449 (6)
O60.2178 (4)0.6625 (3)0.9876 (3)0.0635 (8)
O70.0982 (4)0.6891 (3)0.7377 (3)0.0494 (6)
O80.3459 (4)0.9068 (3)0.9238 (3)0.0654 (8)
Zn10.68363 (5)0.58672 (4)0.62838 (4)0.03747 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0472 (19)0.0338 (17)0.0442 (18)−0.0088 (14)0.0072 (15)−0.0233 (15)
C20.0402 (17)0.0294 (15)0.0330 (15)−0.0068 (13)−0.0022 (13)−0.0157 (13)
C30.051 (2)0.0308 (16)0.0444 (18)−0.0087 (14)0.0016 (15)−0.0211 (15)
C40.0361 (17)0.0369 (17)0.0363 (16)−0.0046 (13)−0.0006 (13)−0.0131 (14)
C50.0402 (18)0.0325 (16)0.0380 (17)−0.0037 (13)−0.0005 (14)−0.0187 (14)
C60.059 (2)0.048 (2)0.050 (2)−0.0061 (18)0.0150 (18)−0.0161 (18)
C70.0468 (18)0.0249 (15)0.0339 (16)−0.0017 (13)−0.0005 (14)−0.0146 (13)
C80.0359 (16)0.0247 (14)0.0368 (16)−0.0031 (12)−0.0015 (13)−0.0158 (13)
C90.0465 (19)0.0318 (16)0.0431 (18)−0.0077 (14)−0.0030 (15)−0.0190 (15)
C100.0327 (17)0.0417 (18)0.0410 (17)−0.0068 (13)0.0010 (13)−0.0178 (15)
C110.0392 (17)0.0352 (16)0.0406 (17)−0.0054 (13)0.0015 (14)−0.0226 (14)
C120.053 (2)0.062 (2)0.050 (2)−0.0182 (18)0.0151 (17)−0.0278 (19)
N10.0369 (14)0.0270 (12)0.0339 (13)−0.0041 (10)−0.0003 (11)−0.0158 (11)
N20.0494 (17)0.0327 (14)0.0427 (15)−0.0095 (12)0.0032 (13)−0.0147 (12)
N30.0352 (14)0.0287 (13)0.0349 (13)−0.0047 (10)0.0007 (11)−0.0169 (11)
N40.0444 (16)0.0356 (14)0.0450 (16)−0.0121 (12)0.0025 (13)−0.0181 (13)
O10.092 (2)0.0378 (13)0.0634 (17)−0.0178 (13)0.0312 (15)−0.0344 (13)
O20.0563 (14)0.0331 (12)0.0444 (13)−0.0164 (10)0.0166 (11)−0.0243 (10)
O30.0831 (19)0.0376 (13)0.0436 (13)−0.0201 (12)0.0148 (13)−0.0273 (11)
O40.0550 (14)0.0322 (12)0.0372 (12)−0.0144 (10)0.0103 (10)−0.0205 (10)
O50.0494 (15)0.0442 (14)0.0403 (14)−0.0148 (11)0.0000 (11)−0.0127 (12)
O60.079 (2)0.071 (2)0.0412 (15)−0.0360 (17)0.0014 (14)−0.0121 (14)
O70.0609 (17)0.0442 (15)0.0444 (14)−0.0189 (12)0.0128 (12)−0.0185 (12)
O80.080 (2)0.0525 (18)0.0684 (19)−0.0268 (15)0.0282 (16)−0.0311 (15)
Zn10.0488 (3)0.0304 (2)0.0392 (2)−0.01200 (16)0.00646 (16)−0.01988 (17)

Geometric parameters (Å, °)

C1—O11.224 (4)C10—N41.327 (4)
C1—O21.266 (4)C10—C111.394 (5)
C1—C21.516 (4)C10—C121.492 (5)
C2—N11.334 (4)C11—N31.336 (4)
C2—C31.373 (4)C11—H110.9300
C3—N21.345 (4)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—N21.325 (4)C12—H12C0.9600
C4—C51.395 (5)Zn1—N11.989 (2)
C4—C61.497 (5)Zn1—N31.985 (2)
C5—N11.341 (4)Zn1—O21.951 (2)
C5—H50.9300Zn1—O41.957 (2)
C6—H6A0.9600Zn1—O52.245 (3)
C6—H6B0.9600O5—H5A0.830 (10)
C6—H6C0.9600O5—H5B0.835 (10)
C7—O31.221 (4)O6—H6D0.839 (10)
C7—O41.267 (4)O6—H6E0.841 (10)
C7—C81.518 (4)O7—H7A0.839 (10)
C8—N31.334 (4)O7—H7B0.836 (10)
C8—C91.370 (4)O8—H8A0.835 (10)
C9—N41.347 (4)O8—H8B0.832 (10)
C9—H90.9300
O1—C1—O2126.4 (3)N3—C11—H11119.7
O1—C1—C2118.7 (3)C10—C11—H11119.7
O2—C1—C2115.0 (3)C10—C12—H12A109.5
N1—C2—C3120.3 (3)C10—C12—H12B109.5
N1—C2—C1115.6 (3)H12A—C12—H12B109.5
C3—C2—C1124.1 (3)C10—C12—H12C109.5
N2—C3—C2121.7 (3)H12A—C12—H12C109.5
N2—C3—H3119.2H12B—C12—H12C109.5
C2—C3—H3119.2C2—N1—C5118.9 (3)
N2—C4—C5121.2 (3)C2—N1—Zn1110.7 (2)
N2—C4—C6118.0 (3)C5—N1—Zn1130.3 (2)
C5—C4—C6120.8 (3)C4—N2—C3117.8 (3)
N1—C5—C4120.0 (3)C8—N3—C11118.4 (3)
N1—C5—H5120.0C8—N3—Zn1111.5 (2)
C4—C5—H5120.0C11—N3—Zn1130.1 (2)
C4—C6—H6A109.5C10—N4—C9117.6 (3)
C4—C6—H6B109.5C1—O2—Zn1115.0 (2)
H6A—C6—H6B109.5C7—O4—Zn1115.3 (2)
C4—C6—H6C109.5Zn1—O5—H5A112 (2)
H6A—C6—H6C109.5Zn1—O5—H5B114 (2)
H6B—C6—H6C109.5H5A—O5—H5B110.6 (17)
O3—C7—O4126.2 (3)H6D—O6—H6E108.5 (17)
O3—C7—C8119.0 (3)H7A—O7—H7B109.8 (17)
O4—C7—C8114.8 (3)H8A—O8—H8B110.3 (18)
N3—C8—C9120.6 (3)O2—Zn1—O4166.16 (10)
N3—C8—C7115.2 (3)O2—Zn1—N395.36 (10)
C9—C8—C7124.2 (3)O4—Zn1—N383.22 (9)
N4—C9—C8121.7 (3)O2—Zn1—N183.64 (9)
N4—C9—H9119.2O4—Zn1—N195.00 (10)
C8—C9—H9119.2N3—Zn1—N1168.45 (10)
N4—C10—C11121.0 (3)O2—Zn1—O597.35 (10)
N4—C10—C12118.2 (3)O4—Zn1—O596.49 (10)
C11—C10—C12120.8 (3)N3—Zn1—O594.98 (10)
N3—C11—C10120.6 (3)N1—Zn1—O596.55 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.353.204 (4)153
C3—H3···O3ii0.932.363.255 (4)162
O8—H8B···N4ii0.83 (1)2.30 (2)3.044 (4)150 (3)
O6—H6E···O70.84 (1)2.09 (1)2.932 (4)177 (4)
O6—H6D···O80.84 (1)1.92 (1)2.755 (4)171 (4)
O8—H8A···O10.84 (1)1.95 (1)2.781 (4)171 (4)
O7—H7B···O3iii0.84 (1)2.00 (2)2.797 (3)160 (4)
O7—H7A···N2iv0.84 (1)2.19 (2)2.977 (4)157 (3)
O5—H5B···O6v0.84 (1)1.92 (1)2.754 (4)172 (3)
O5—H5A···O7vi0.83 (1)2.03 (1)2.861 (4)175 (4)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+2; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5038).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Cheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem.632, 2326–2330.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography