PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1048.
Published online 2009 August 8. doi:  10.1107/S1600536809030402
PMCID: PMC2969855

Sodium 2-nitro­cinnamate dihydrate: a one-dimensional hydrogen-bonded coordination polymer

Abstract

The title compound catena-poly[aqua­sodium-μ2-aqua-μ3-2-nitro­cinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitro­cinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octa­hedral NaO6 centres, comprising three facially related monodentate carboxyl­ate O-atom donors from separate ligands (all bridging) [Na—O = 2.4370 (13)–2.5046 (13) Å], and three water mol­ecules (two bridging and one monodentate) [Na—O = 2.3782 (13)–2.4404 (17) Å]. The structure is also stabilized by intra-chain water–carboxyl­ate and water–nitro O—H(...)O hydrogen bonds.

Related literature

For literature on similar compounds, see: Crowther et al. (2008 [triangle]); Kariuki et al. (1995 [triangle]); Kula et al. (2007 [triangle]); Schmidt (1964 [triangle]); Smith et al. (2006 [triangle]); Trividi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1048-scheme1.jpg

Experimental

Crystal data

  • [Na(C9H6NO4)(H2O)2]
  • M r = 251.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1048-efi1.jpg
  • a = 19.4179 (7) Å
  • b = 3.6899 (2) Å
  • c = 14.8738 (7) Å
  • β = 92.239 (4)°
  • V = 1064.90 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 297 K
  • 0.40 × 0.30 × 0.13 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.93, T max = 0.98
  • 6531 measured reflections
  • 2100 independent reflections
  • 1626 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.113
  • S = 1.09
  • 2100 reflections
  • 170 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030402/su2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030402/su2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

supplementary crystallographic information

Comment

Although the structures of two polymorphs of trans-cinnamic acid have been determined (Schmidt, 1964; Smith et al., 2006), the structures of neither trans-2-nitrocinnamic acid [(E)-3-(2-nitrophenyl)propenoic acid] nor any of its alkali metal salts are known, although the dicyclohexylaminium salt has been reported (Trividi et al., 2005). The only structures of alkali metal compounds of analogous ring-substituted trans-cinnamic acids are the sodium complexes with 2-chlorocinnamic acid (Kariuki et al., 1995), 3-chlorocinnamic acid (Crowther et al., 2008), and 4-hydroxy-2-methoxycinnamic acid (Kula et al., 2007). We have now prepared the sodium salt of trans-2-nitrocinnamic acid, a dihydrate [Na(C9H6NO4)(H2O)2]n and its structure is reported here.

The molecular structure of the title compound is illustrated in Fig. 1. The polymeric structure is based on octahadral six-coordinate NaO6 centres comprising three facially related monodentate carboxylate O-donors from separate ligands (all bridging) [Na–O, 2.4370 (13)– 2.5046 (13) Å] and three water molecules (two bridging, one monodentate) [Na–O, 2.3782 (13)–2.4404 (17) Å]. These units are linked into one-dimensional coordination polymer chains which extend along direction [010] (Fig. 1). The structure is similar to that of the sodium 2-chlorocinnamate complex (Kariuki et al., 1995). The polymer chains are stabilized by intra-chain water OH···Ocarboxylate and OH···Onitrohydrogen bonds (Table 1).

In the substituted cinnamate ligand molecule, the nitro group is rotated out of the plane of the benzene ring [torsion angle C1–C2–N21–O22, 144.65 (17)°], while the carboxylate group is similarly non-coplanar [C11–C21–C31–O31, -169.51 (17)°].

Experimental

The title compound was synthesized by heating together for 10 minutes under reflux 1 mmol quantities of trans-cinnamic acid [(E-3-(2-nitrophenyl)propenoic acid] and sodium carbonate in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial rt evaporation of the hot-filtered solution gave thin colourless plate-like crystals, suitable for X-ray analysis.

Refinement

The H-atoms of the water molecules were located in difference electron-density maps and were freely refined: O-H = 0.77 (3) - 0.91 (4) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the title compound, showing the one-dimensional chain polymer structure extending along direction [010]. Displacement ellipsoids are drawn at the 50% probability level [Symmetry codes: (i) x, y + 1, z; ...

Crystal data

[Na(C9H6NO4)(H2O)2]F(000) = 520
Mr = 251.17Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2943 reflections
a = 19.4179 (7) Åθ = 3.0–28.7°
b = 3.6899 (2) ŵ = 0.17 mm1
c = 14.8738 (7) ÅT = 297 K
β = 92.239 (4)°Plate, colourless
V = 1064.90 (9) Å30.40 × 0.30 × 0.13 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer2100 independent reflections
Radiation source: Enhance (Mo) X-ray source1626 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→21
Tmin = 0.93, Tmax = 0.98k = −4→4
6531 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0708P)2] where P = (Fo2 + 2Fc2)/3
2100 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Na10.05494 (3)0.73072 (17)−0.06704 (4)0.0272 (2)
O1W0.02635 (6)0.2374 (3)−0.16440 (8)0.0319 (4)
O2W0.16105 (8)0.6812 (5)−0.14886 (12)0.0691 (7)
O210.29871 (7)0.4625 (6)0.31366 (9)0.0637 (6)
O220.39979 (7)0.2280 (5)0.32066 (10)0.0541 (6)
O310.06940 (6)0.2430 (3)0.04255 (8)0.0282 (4)
O320.10417 (6)0.0743 (4)0.18086 (8)0.0336 (4)
N210.35246 (7)0.3769 (4)0.27927 (10)0.0339 (5)
C10.30837 (8)0.4562 (5)0.12070 (11)0.0267 (5)
C20.36252 (8)0.4742 (4)0.18535 (11)0.0261 (5)
C30.42813 (9)0.5880 (5)0.16617 (12)0.0327 (6)
C40.44154 (10)0.6987 (5)0.08063 (14)0.0384 (6)
C50.38972 (10)0.6860 (5)0.01494 (13)0.0368 (6)
C60.32514 (9)0.5634 (5)0.03431 (12)0.0346 (6)
C110.23935 (9)0.3141 (5)0.13955 (12)0.0297 (5)
C210.18383 (9)0.3638 (5)0.08772 (13)0.0345 (6)
C310.11421 (8)0.2155 (4)0.10637 (11)0.0256 (5)
H30.462900.589500.210900.0390*
H40.485200.781500.067200.0460*
H50.398500.76120−0.043200.0440*
H60.291400.55150−0.011800.0420*
H110.234900.179700.191900.0360*
H11W0.0460 (11)0.241 (6)−0.209 (2)0.055 (8)*
H12W−0.0168 (12)0.157 (7)−0.1733 (17)0.044 (8)*
H210.188100.501000.035800.0410*
H21W0.1828 (16)0.851 (9)−0.138 (2)0.093 (13)*
H22W0.1500 (18)0.666 (12)−0.209 (2)0.101 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0279 (4)0.0275 (4)0.0260 (4)−0.0019 (3)−0.0005 (3)0.0007 (3)
O1W0.0363 (7)0.0350 (7)0.0244 (7)−0.0082 (5)0.0026 (5)−0.0002 (5)
O2W0.0399 (9)0.1143 (15)0.0532 (10)−0.0214 (9)0.0046 (7)0.0098 (9)
O210.0357 (8)0.1222 (15)0.0337 (8)0.0081 (9)0.0067 (6)−0.0065 (9)
O220.0475 (9)0.0775 (12)0.0364 (9)0.0164 (7)−0.0096 (7)0.0112 (7)
O310.0220 (6)0.0370 (7)0.0253 (6)−0.0013 (5)−0.0039 (5)0.0011 (5)
O320.0290 (7)0.0461 (8)0.0255 (7)0.0007 (5)0.0005 (5)0.0056 (6)
N210.0266 (8)0.0471 (9)0.0276 (8)−0.0020 (7)−0.0027 (6)−0.0022 (7)
C10.0235 (8)0.0281 (9)0.0283 (9)0.0035 (7)0.0004 (7)−0.0017 (7)
C20.0264 (8)0.0257 (8)0.0260 (9)0.0040 (7)0.0003 (7)−0.0020 (7)
C30.0255 (9)0.0331 (10)0.0393 (11)−0.0010 (8)−0.0021 (7)−0.0033 (8)
C40.0299 (10)0.0362 (10)0.0499 (13)−0.0071 (8)0.0106 (9)−0.0017 (9)
C50.0405 (11)0.0374 (10)0.0331 (11)−0.0045 (8)0.0097 (8)0.0035 (8)
C60.0340 (10)0.0415 (11)0.0281 (9)0.0024 (8)−0.0026 (7)0.0020 (8)
C110.0261 (9)0.0353 (10)0.0276 (9)−0.0015 (7)0.0001 (7)−0.0008 (7)
C210.0266 (9)0.0435 (11)0.0334 (10)−0.0035 (8)−0.0004 (7)0.0093 (8)
C310.0231 (8)0.0288 (9)0.0248 (9)0.0039 (7)0.0008 (7)−0.0028 (7)

Geometric parameters (Å, °)

Na1—O1W2.3782 (13)C1—C21.399 (2)
Na1—O2W2.4404 (17)C1—C61.395 (2)
Na1—O312.4370 (13)C1—C111.476 (2)
Na1—O1Wi2.4162 (13)C2—C31.382 (2)
Na1—O31i2.5046 (13)C3—C41.371 (3)
Na1—O31ii2.4577 (13)C4—C51.376 (3)
O21—N211.222 (2)C5—C61.374 (3)
O22—N211.217 (2)C11—C211.314 (3)
O31—C311.267 (2)C21—C311.494 (2)
O32—C311.247 (2)C3—H30.9300
O1W—H11W0.78 (3)C4—H40.9300
O1W—H12W0.89 (2)C5—H50.9300
O2W—H21W0.77 (3)C6—H60.9300
O2W—H22W0.91 (4)C11—H110.9300
N21—C21.463 (2)C21—H210.9300
O1W—Na1—O2W79.67 (5)C2—C1—C6115.06 (15)
O1W—Na1—O3181.96 (4)C2—C1—C11123.37 (15)
O1W—Na1—O1Wi100.64 (4)C6—C1—C11121.46 (15)
O1W—Na1—O31i172.53 (5)N21—C2—C1121.34 (14)
O1W—Na1—O31ii85.02 (4)N21—C2—C3115.49 (14)
O2W—Na1—O31101.58 (6)C1—C2—C3123.16 (15)
O1Wi—Na1—O2W86.43 (5)C2—C3—C4119.49 (17)
O2W—Na1—O31i107.80 (5)C3—C4—C5119.26 (18)
O2W—Na1—O31ii158.48 (6)C4—C5—C6120.69 (18)
O1Wi—Na1—O31171.93 (5)C1—C6—C5122.29 (16)
O31—Na1—O31i96.60 (4)C1—C11—C21124.71 (17)
O31—Na1—O31ii91.04 (4)C11—C21—C31124.59 (17)
O1Wi—Na1—O31i79.83 (4)O31—C31—C21115.57 (14)
O1Wi—Na1—O31ii81.62 (4)O32—C31—C21119.48 (15)
O31i—Na1—O31ii87.68 (4)O31—C31—O32124.96 (15)
Na1—O1W—Na1iii100.64 (5)C2—C3—H3120.00
Na1—O31—C31128.20 (10)C4—C3—H3120.00
Na1—O31—Na1iii96.60 (5)C3—C4—H4120.00
Na1—O31—Na1ii88.96 (4)C5—C4—H4120.00
Na1iii—O31—C31118.92 (10)C4—C5—H5120.00
Na1ii—O31—C31122.84 (10)C6—C5—H5120.00
Na1iii—O31—Na1ii92.32 (4)C1—C6—H6119.00
H11W—O1W—H12W112 (2)C5—C6—H6119.00
H21W—O2W—H22W111 (4)C1—C11—H11118.00
O21—N21—C2118.98 (14)C21—C11—H11118.00
O22—N21—C2117.87 (14)C11—C21—H21118.00
O21—N21—O22123.06 (16)C31—C21—H21118.00
O2W—Na1—O1W—Na1iii95.66 (6)O31—Na1—O31ii—C31ii−136.41 (11)
O31—Na1—O1W—Na1iii−7.75 (5)Na1—O31—C31—O32145.52 (13)
O1Wi—Na1—O1W—Na1iii180.00 (6)Na1—O31—C31—C21−35.11 (19)
O31ii—Na1—O1W—Na1iii−99.51 (5)Na1iii—O31—C31—O32−87.48 (18)
O1W—Na1—O31—C31142.67 (13)Na1iii—O31—C31—C2191.89 (14)
O1W—Na1—O31—Na1iii7.39 (4)Na1ii—O31—C31—O3226.8 (2)
O1W—Na1—O31—Na1ii−84.82 (4)Na1ii—O31—C31—C21−153.81 (11)
O2W—Na1—O31—C3165.02 (14)O21—N21—C2—C1−38.6 (2)
O2W—Na1—O31—Na1iii−70.26 (6)O21—N21—C2—C3140.47 (18)
O2W—Na1—O31—Na1ii−162.47 (5)O22—N21—C2—C1144.65 (17)
O31i—Na1—O31—C31−44.72 (13)O22—N21—C2—C3−36.2 (2)
O31i—Na1—O31—Na1iii180.00 (4)C6—C1—C2—N21178.85 (15)
O31i—Na1—O31—Na1ii87.79 (4)C6—C1—C2—C3−0.2 (3)
O31ii—Na1—O31—C31−132.51 (13)C11—C1—C2—N21−4.8 (3)
O31ii—Na1—O31—Na1iii92.21 (5)C11—C1—C2—C3176.18 (17)
O31ii—Na1—O31—Na1ii0.00 (3)C2—C1—C6—C5−1.5 (3)
O1W—Na1—O1Wi—Na1i−180.00 (6)C11—C1—C6—C5−177.99 (17)
O2W—Na1—O1Wi—Na1i−101.22 (6)C2—C1—C11—C21164.51 (18)
O2W—Na1—O31i—Na1i75.56 (6)C6—C1—C11—C21−19.4 (3)
O2W—Na1—O31i—C31i−65.26 (12)N21—C2—C3—C4−177.36 (16)
O31—Na1—O31i—Na1i180.00 (3)C1—C2—C3—C41.7 (3)
O31—Na1—O31i—C31i39.19 (12)C2—C3—C4—C5−1.6 (3)
O1W—Na1—O31ii—Na1ii81.83 (4)C3—C4—C5—C6−0.1 (3)
O1W—Na1—O31ii—C31ii−54.58 (11)C4—C5—C6—C11.7 (3)
O2W—Na1—O31ii—Na1ii126.42 (15)C1—C11—C21—C31179.16 (16)
O2W—Na1—O31ii—C31ii−10.0 (2)C11—C21—C31—O31−169.51 (17)
O31—Na1—O31ii—Na1ii0.00 (5)C11—C21—C31—O329.9 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H11W···O32iv0.78 (3)2.14 (3)2.8871 (17)162 (2)
O1W—H12W···O32v0.89 (2)1.90 (2)2.7852 (17)171 (2)
O2W—H21W···O21vi0.77 (3)2.49 (3)3.050 (2)131 (3)
O2W—H22W···O32iv0.91 (4)2.04 (5)2.882 (2)153 (4)
C11—H11···O210.932.392.846 (2)110

Symmetry codes: (iv) x, −y+1/2, z−1/2; (v) −x, −y, −z; (vi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2131).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct.872, 64–71.
  • Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053.
  • Kula, A., Mazur, L. & Rzaczynska, Z. (2007). J. Coord. Chem.60, 843–850.
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.
  • Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trividi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem.15, 2606–2614.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography