PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1309.
Published online 2009 May 20. doi:  10.1107/S1600536809016663
PMCID: PMC2969837

Bis(2-hydroxy­benzaldehyde oxime) O,O′-butane-1,4-diyldicarbonyl ether

Abstract

The mol­ecule of the title compound, C20H20N2O6, lies across a crystallographic inversion centre, the asymmetric unit comprising one half-mol­ecule. An intra­molecular O—H(...)N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. Pairs of inter­molecular C—H(...)O hydrogen bonds link neighbouring mol­ecules into a layer with R 2 2(38) ring motif. The crystal structure is further stabilized by the inter­molecular C—H(...)π inter­actions.

Related literature

For bond-length data, see Allen et al. (1987 [triangle]). For hydrogen bond motifs, see Bernstein et al. (1995 [triangle]). For Schiff bases, see: Granovski et al., (1993 [triangle]). For the synthesis, see: Hosseini Sarvari (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1309-scheme1.jpg

Experimental

Crystal data

  • C20H20N2O6
  • M r = 384.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1309-efi3.jpg
  • a = 13.0293 (11) Å
  • b = 5.5464 (4) Å
  • c = 25.538 (2) Å
  • β = 91.348 (7)°
  • V = 1845.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 120 K
  • 0.45 × 0.11 × 0.10 mm

Data collection

  • STOE IPDSII diffractometer
  • Absorption correction: numerical (X-RED32; Stoe & Cie (2005 [triangle]) T min = 0.956, T max = 0.985
  • 10357 measured reflections
  • 2493 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.099
  • S = 1.10
  • 2493 reflections
  • 135 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016663/at2778sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016663/at2778Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shiraz University for financial support.

supplementary crystallographic information

Comment

Schiff base compounds are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). In continuation of our works on the synthesis and structural characterization of Schiff base ligands here we report the structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, lies across a crystallographic inversion centre. Intramolecular O—H···N hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into a layer with R22(38) ring motif (Fig. 2). The crystal structure is further stabilized by the intermolecular C—H···π interactions [Cg1 is the centroid of the C1–C6 benzene ring] (Table 1).

Experimental

An ethyl acetate solution (40 ml) of salicylaldoxime (2 mmol, 768 mg) was treated with butanedicarboxylic acid chloride (1 mmol, 183 mg) at -5 0 C. The mixture was stirred for 30 min and then filtered and the resulting white powder dried under air (Hosseini Sarvari, 2003). Single crystals suitable for X-ray diffraction were obtained from an ethanol solution.

Refinement

The O-bound and C7 bound hydrogen atoms were located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refined using a riding model approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are shown as dashed lines. Symmetry code for A suffix: -x + 1/2, -y + 1/2, -z + 1].
Fig. 2.
The crystal packing of the title compound, showing linking of the molecules into a layer through R22(38) motifs. Intermolecular interactions are drawn as dashed lines.

Crystal data

C20H20N2O6F(000) = 808
Mr = 384.38Dx = 1.384 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1302 reflections
a = 13.0293 (11) Åθ = 3.1–29.2°
b = 5.5464 (4) ŵ = 0.10 mm1
c = 25.538 (2) ÅT = 120 K
β = 91.348 (7)°Needle, colourless
V = 1845.0 (3) Å30.45 × 0.11 × 0.10 mm
Z = 4

Data collection

STOE IPDS II diffractometer2493 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
graphiteRint = 0.091
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 3.1°
rotation method scansh = −17→17
Absorption correction: numerical (X-RED32; Stoe & Cie (2005)k = −7→7
Tmin = 0.956, Tmax = 0.985l = −35→34
41515 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0425P)2 + 1.8216P] where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max = 0.004
135 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.79600 (9)−0.3740 (2)0.32698 (5)0.0186 (3)
C20.73433 (10)−0.5276 (2)0.29667 (5)0.0204 (3)
H20.7620−0.66770.28280.025*
C30.63188 (10)−0.4721 (2)0.28720 (5)0.0206 (3)
H30.5909−0.57680.26740.025*
C40.58953 (9)−0.2610 (3)0.30699 (5)0.0212 (3)
H40.5207−0.22450.30040.025*
C50.65095 (9)−0.1061 (2)0.33650 (5)0.0192 (3)
H50.62300.03550.34950.023*
C60.75482 (9)−0.1590 (2)0.34720 (5)0.0168 (2)
C70.81678 (10)0.0064 (2)0.37953 (5)0.0193 (3)
H70.7866 (13)0.154 (3)0.3912 (7)0.027 (4)*
C81.05836 (10)0.0434 (2)0.43627 (5)0.0204 (3)
C91.11260 (10)0.2321 (2)0.46898 (5)0.0208 (3)
H9A1.07410.26170.50040.025*
H9B1.11550.38160.44940.025*
C101.22133 (10)0.1530 (2)0.48435 (5)0.0206 (3)
H10B1.25880.11670.45290.025*
H10A1.21810.00690.50510.025*
N10.90918 (8)−0.0542 (2)0.39115 (4)0.0224 (3)
O10.89508 (7)−0.4424 (2)0.33553 (4)0.0289 (3)
H10.9268 (18)−0.333 (5)0.3572 (10)0.062 (7)*
O20.96033 (7)0.11970 (18)0.42331 (4)0.0223 (2)
O31.09270 (8)−0.14750 (19)0.42343 (4)0.0271 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0151 (5)0.0196 (6)0.0210 (6)0.0028 (4)−0.0008 (4)0.0010 (5)
C20.0222 (6)0.0177 (6)0.0213 (6)0.0026 (5)0.0002 (5)−0.0012 (5)
C30.0191 (6)0.0219 (6)0.0207 (6)−0.0031 (5)−0.0022 (4)−0.0009 (5)
C40.0146 (5)0.0261 (7)0.0227 (6)0.0016 (5)−0.0013 (4)−0.0001 (5)
C50.0172 (6)0.0199 (6)0.0204 (6)0.0031 (5)0.0011 (4)−0.0008 (5)
C60.0163 (5)0.0171 (6)0.0170 (5)−0.0003 (4)−0.0008 (4)0.0010 (5)
C70.0202 (6)0.0185 (6)0.0191 (6)−0.0007 (5)−0.0006 (4)−0.0001 (5)
C80.0194 (6)0.0224 (7)0.0192 (6)−0.0037 (5)−0.0019 (4)0.0009 (5)
C90.0209 (6)0.0207 (6)0.0206 (6)−0.0033 (5)−0.0025 (5)−0.0011 (5)
C100.0204 (6)0.0216 (6)0.0197 (6)−0.0032 (5)−0.0035 (5)−0.0012 (5)
N10.0197 (5)0.0231 (6)0.0241 (6)−0.0047 (4)−0.0043 (4)−0.0052 (5)
O10.0170 (5)0.0292 (6)0.0402 (6)0.0085 (4)−0.0070 (4)−0.0111 (5)
O20.0199 (5)0.0217 (5)0.0250 (5)−0.0030 (4)−0.0048 (4)−0.0048 (4)
O30.0250 (5)0.0231 (5)0.0330 (5)0.0006 (4)−0.0067 (4)−0.0060 (4)

Geometric parameters (Å, °)

C1—O11.3583 (15)C7—H70.958 (18)
C1—C21.3935 (18)C8—O31.1985 (17)
C1—C61.4105 (18)C8—O21.3784 (16)
C2—C31.3857 (17)C8—C91.5047 (18)
C2—H20.9300C9—C101.5255 (18)
C3—C41.3943 (19)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.3850 (18)C10—C10i1.526 (2)
C4—H40.9300C10—H10B0.9700
C5—C61.4054 (17)C10—H10A0.9700
C5—H50.9300N1—O21.4226 (14)
C6—C71.4639 (17)O1—H10.91 (3)
C7—N11.2782 (17)
O1—C1—C2116.85 (12)C6—C7—H7119.1 (10)
O1—C1—C6123.07 (12)O3—C8—O2123.73 (12)
C2—C1—C6120.08 (11)O3—C8—C9126.36 (12)
C3—C2—C1120.10 (12)O2—C8—C9109.91 (11)
C3—C2—H2120.0C8—C9—C10111.35 (11)
C1—C2—H2120.0C8—C9—H9A109.4
C2—C3—C4120.75 (12)C10—C9—H9A109.4
C2—C3—H3119.6C8—C9—H9B109.4
C4—C3—H3119.6C10—C9—H9B109.4
C5—C4—C3119.31 (11)H9A—C9—H9B108.0
C5—C4—H4120.3C9—C10—C10i111.85 (14)
C3—C4—H4120.3C9—C10—H10B109.2
C4—C5—C6121.19 (12)C10i—C10—H10B109.2
C4—C5—H5119.4C9—C10—H10A109.2
C6—C5—H5119.4C10i—C10—H10A109.2
C5—C6—C1118.56 (11)H10B—C10—H10A107.9
C5—C6—C7119.65 (12)C7—N1—O2112.42 (11)
C1—C6—C7121.79 (11)C1—O1—H1109.0 (15)
N1—C7—C6118.03 (12)C8—O2—N1110.45 (10)
N1—C7—H7122.9 (10)
O1—C1—C2—C3178.68 (12)C2—C1—C6—C7179.53 (12)
C6—C1—C2—C3−1.30 (19)C5—C6—C7—N1175.82 (12)
C1—C2—C3—C41.0 (2)C1—C6—C7—N1−3.07 (19)
C2—C3—C4—C5−0.1 (2)O3—C8—C9—C100.66 (19)
C3—C4—C5—C6−0.6 (2)O2—C8—C9—C10179.67 (10)
C4—C5—C6—C10.30 (19)C8—C9—C10—C10i177.66 (13)
C4—C5—C6—C7−178.63 (12)C6—C7—N1—O2−179.06 (10)
O1—C1—C6—C5−179.35 (12)O3—C8—O2—N1−2.57 (18)
C2—C1—C6—C50.63 (18)C9—C8—O2—N1178.39 (10)
O1—C1—C6—C7−0.4 (2)C7—N1—O2—C8178.03 (11)

Symmetry codes: (i) −x+5/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.79 (3)2.5836 (15)144 (2)
C4—H4···O1ii0.932.453.1874 (17)136
C2—H2···Cg1iii0.932.753.4659 (14)134

Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) x+1, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2778).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Hosseini Sarvari, M. (2003). Ph. D. Thesis, Shiraz University.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography