PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1211.
Published online 2009 May 7. doi:  10.1107/S1600536809008216
PMCID: PMC2969821

1-Chloro-2-(4-phenyl­piperazin-1-yl)ethanone

Abstract

The title compound, C12H15ClN2O, is a piperazine derivative with the potential for use as a starting material for pharmaceutial and agrochemical applications. The structure is stabilized by C—H(...)O hydrogen bonds, C—H(...)π inter­actions and π–π stacking inter­actions [centroid–centroid distance = is 4.760 (2) Å].

Related literature

For the biological activity of piperazine and its derivatives, see: Berkheij (2005 [triangle]); Upadhayaya et al. (2004 [triangle]); Choudhary et al. (2006 [triangle]); Vacca et al. (1994 [triangle]); Hulme (1999 [triangle]). For reference structural data, see: Drew & Leslie (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1211-scheme1.jpg

Experimental

Crystal data

  • C12H15ClN2O
  • M r = 238.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1211-efi1.jpg
  • a = 9.4423 (19) Å
  • b = 8.5629 (17) Å
  • c = 14.506 (3) Å
  • β = 101.34 (3)°
  • V = 1149.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.940, T max = 0.964
  • 9264 measured reflections
  • 2729 independent reflections
  • 2151 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.098
  • S = 1.07
  • 2729 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008216/hg2461sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008216/hg2461Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province, China (No. Y2007B50). The authors thank Professor Yong-Hong Wen for help with this paper.

supplementary crystallographic information

Comment

Piperazine and its derivatives are important pharmacores that can be found in biologically active compounds across a number of different therapeutic areas (Berkheij, 2005), such as antifungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial, anti-psychotic agents (Choudhary et al., 2006), HIV protease inhibitor (Vacca et al., 1994), anti-depressant and anti-tumour activity colon, prostate, breast, lung and leukemia tumors (Hulme et al., 1999). In an attempt to further synthesis piperazine derivatives, the title compound, 2-chloro-1-(4-phenylpiperazin-1-yl)ethanone, (I) (Fig. 1), was synthesized and its X-ray crystal structure determined.

In the structure of title compund (Fig. 1), the bond lengths and angles in the piperazine ring and the benzene ring are normal (Drew & Leslie, 1986) (Table 1). The dihedral angle between the piperazine ring N1/N2/C7—C10 and C1—C6 benzene ring is 36.8 (2)°. The molecular structure is stabilized by inter and intramolecular C—H···O interactions (Table 2). There exists π-π stacking interactions and C—H···π interactions. The π-π stacking interaction between the two phenyl rings is observed in the structure. The centroid distance between the two rings is 4.760 Å. There are three types of C—H···π interactions, C5—H5···Cg2, C8—H8B···Cg2 and C12—H12A···Cg2 (Cg2 is the C1—C6 ring centroid) (Table 2).

Experimental

To a solution of 1-phenylpiperazine hydrochloride (2.0 g, 10 mmol) triethylamine (2.8 ml, 2 mmol) in anhydrous dichloromethane (50 ml) was added chloroacetyl chloride (0.8 mL, 10 mmol) dropwise at 273 K. The reaction mixture was stirred at room temperature for 2 h and monitored by TLC, and then the mixture was diluted with dichloromethane (50 ml) and washed with water (200 ml). The organic phase was dride over anhydrous sodium sulfate and concentrated to yield a solid which was crystallized to obtain 2-chloro-1-(4-phenylpiperazin-1-yl)ethanone.

Refinement

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
Fig. 2.
The packing diagram of (I), viewed down the c axis, showing the intermolecular hydrogen bonds (dashed lines).

Crystal data

C12H15ClN2OF(000) = 504
Mr = 238.71Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3260 reflections
a = 9.4423 (19) Åθ = 3.2–27.9°
b = 8.5629 (17) ŵ = 0.31 mm1
c = 14.506 (3) ÅT = 113 K
β = 101.34 (3)°Block, colourless
V = 1149.9 (4) Å30.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2729 independent reflections
Radiation source: rotating anode2151 reflections with I > 2σ(I)
confocalRint = 0.035
ω scansθmax = 27.9°, θmin = 3.2°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −12→12
Tmin = 0.940, Tmax = 0.964k = −8→11
9264 measured reflectionsl = −16→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.055P)2 + 0.0763P] where P = (Fo2 + 2Fc2)/3
2729 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.62862 (4)0.03256 (4)0.08928 (2)0.03631 (13)
O10.58185 (10)−0.16571 (10)0.24044 (7)0.0297 (2)
N10.75320 (11)0.03812 (12)0.56187 (8)0.0237 (2)
N20.66086 (12)−0.00754 (12)0.36497 (8)0.0244 (2)
C10.82553 (13)0.04592 (14)0.65699 (10)0.0230 (3)
C20.76046 (14)−0.02277 (14)0.72590 (10)0.0276 (3)
H20.6724−0.07390.70820.033*
C30.82561 (16)−0.01541 (15)0.81981 (11)0.0312 (3)
H30.7815−0.06270.86460.037*
C40.95649 (16)0.06196 (16)0.84812 (10)0.0311 (3)
H41.00040.06640.91130.037*
C51.02012 (14)0.13211 (15)0.78058 (10)0.0299 (3)
H51.10690.18540.79890.036*
C60.95647 (13)0.12419 (15)0.68604 (10)0.0253 (3)
H61.00130.17140.64160.030*
C70.80673 (14)0.13837 (14)0.49496 (10)0.0256 (3)
H7A0.89610.09610.48210.031*
H7B0.82630.24190.52150.031*
C80.69545 (14)0.14856 (14)0.40466 (10)0.0266 (3)
H8A0.60840.19750.41700.032*
H8B0.73250.21280.35970.032*
C90.61886 (13)−0.11941 (14)0.43097 (10)0.0250 (3)
H9A0.6128−0.22310.40350.030*
H9B0.5242−0.09210.44250.030*
C100.72706 (13)−0.12050 (14)0.52343 (10)0.0256 (3)
H10A0.6908−0.18570.56830.031*
H10B0.8174−0.16500.51370.031*
C110.63200 (13)−0.03982 (14)0.27233 (10)0.0237 (3)
C120.66787 (14)0.08973 (15)0.20873 (9)0.0272 (3)
H12A0.76950.11580.22660.033*
H12B0.61240.18230.21690.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0485 (2)0.0282 (2)0.0289 (2)0.00339 (14)−0.00042 (16)−0.00073 (13)
O10.0291 (5)0.0214 (5)0.0375 (6)−0.0028 (4)0.0034 (4)−0.0060 (4)
N10.0219 (5)0.0164 (5)0.0314 (6)−0.0042 (4)0.0021 (4)0.0009 (4)
N20.0241 (5)0.0174 (5)0.0309 (6)−0.0036 (4)0.0033 (4)−0.0005 (4)
C10.0199 (6)0.0161 (6)0.0319 (7)0.0025 (4)0.0027 (5)0.0008 (5)
C20.0236 (6)0.0199 (6)0.0396 (8)−0.0006 (5)0.0072 (6)0.0022 (5)
C30.0358 (7)0.0233 (7)0.0360 (8)0.0027 (6)0.0105 (6)0.0043 (6)
C40.0359 (7)0.0263 (7)0.0293 (8)0.0046 (6)0.0021 (6)−0.0028 (6)
C50.0261 (7)0.0254 (7)0.0364 (8)−0.0013 (5)0.0016 (6)−0.0042 (6)
C60.0222 (6)0.0210 (6)0.0325 (8)−0.0023 (5)0.0047 (5)−0.0005 (5)
C70.0242 (6)0.0181 (6)0.0333 (8)−0.0051 (5)0.0028 (5)0.0003 (5)
C80.0306 (7)0.0164 (6)0.0314 (7)−0.0031 (5)0.0026 (6)−0.0005 (5)
C90.0228 (6)0.0169 (6)0.0348 (8)−0.0049 (5)0.0048 (5)−0.0006 (5)
C100.0220 (6)0.0160 (6)0.0375 (8)−0.0023 (5)0.0031 (5)0.0013 (5)
C110.0165 (6)0.0193 (6)0.0341 (7)0.0031 (5)0.0022 (5)−0.0011 (5)
C120.0280 (7)0.0220 (6)0.0291 (7)0.0016 (5)−0.0004 (5)−0.0014 (5)

Geometric parameters (Å, °)

Cl1—C121.7682 (14)C5—C61.386 (2)
O1—C111.2304 (15)C5—H50.9300
N1—C11.4157 (18)C6—H60.9300
N1—C71.4586 (16)C7—C81.5119 (18)
N1—C101.4705 (16)C7—H7A0.9700
N2—C111.3463 (18)C7—H7B0.9700
N2—C91.4632 (17)C8—H8A0.9700
N2—C81.4666 (15)C8—H8B0.9700
C1—C61.3965 (18)C9—C101.5177 (18)
C1—C21.4015 (19)C9—H9A0.9700
C2—C31.381 (2)C9—H9B0.9700
C2—H20.9300C10—H10A0.9700
C3—C41.391 (2)C10—H10B0.9700
C3—H30.9300C11—C121.5229 (18)
C4—C51.383 (2)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C1—N1—C7117.19 (10)H7A—C7—H7B108.2
C1—N1—C10115.21 (10)N2—C8—C7110.53 (10)
C7—N1—C10110.21 (11)N2—C8—H8A109.5
C11—N2—C9119.41 (10)C7—C8—H8A109.5
C11—N2—C8124.38 (11)N2—C8—H8B109.5
C9—N2—C8114.07 (11)C7—C8—H8B109.5
C6—C1—C2118.20 (13)H8A—C8—H8B108.1
C6—C1—N1123.06 (12)N2—C9—C10111.12 (10)
C2—C1—N1118.70 (11)N2—C9—H9A109.4
C3—C2—C1120.76 (13)C10—C9—H9A109.4
C3—C2—H2119.6N2—C9—H9B109.4
C1—C2—H2119.6C10—C9—H9B109.4
C2—C3—C4120.68 (13)H9A—C9—H9B108.0
C2—C3—H3119.7N1—C10—C9111.28 (10)
C4—C3—H3119.7N1—C10—H10A109.4
C5—C4—C3118.83 (14)C9—C10—H10A109.4
C5—C4—H4120.6N1—C10—H10B109.4
C3—C4—H4120.6C9—C10—H10B109.4
C4—C5—C6121.01 (13)H10A—C10—H10B108.0
C4—C5—H5119.5O1—C11—N2122.85 (12)
C6—C5—H5119.5O1—C11—C12121.70 (12)
C5—C6—C1120.52 (13)N2—C11—C12115.44 (10)
C5—C6—H6119.7C11—C12—Cl1111.30 (9)
C1—C6—H6119.7C11—C12—H12A109.4
N1—C7—C8109.74 (11)Cl1—C12—H12A109.4
N1—C7—H7A109.7C11—C12—H12B109.4
C8—C7—H7A109.7Cl1—C12—H12B109.4
N1—C7—H7B109.7H12A—C12—H12B108.0
C8—C7—H7B109.7
C7—N1—C1—C6−10.51 (17)C11—N2—C8—C7−143.92 (12)
C10—N1—C1—C6121.65 (13)C9—N2—C8—C752.87 (14)
C7—N1—C1—C2166.96 (11)N1—C7—C8—N2−57.54 (14)
C10—N1—C1—C2−60.88 (15)C11—N2—C9—C10145.88 (11)
C6—C1—C2—C3−1.11 (18)C8—N2—C9—C10−50.00 (14)
N1—C1—C2—C3−178.71 (11)C1—N1—C10—C9166.07 (10)
C1—C2—C3—C40.7 (2)C7—N1—C10—C9−58.57 (13)
C2—C3—C4—C50.3 (2)N2—C9—C10—N152.08 (14)
C3—C4—C5—C6−0.9 (2)C9—N2—C11—O1−6.05 (18)
C4—C5—C6—C10.5 (2)C8—N2—C11—O1−168.43 (12)
C2—C1—C6—C50.48 (19)C9—N2—C11—C12174.87 (11)
N1—C1—C6—C5177.96 (11)C8—N2—C11—C1212.49 (17)
C1—N1—C7—C8−164.61 (10)O1—C11—C12—Cl1−0.20 (15)
C10—N1—C7—C861.01 (13)N2—C11—C12—Cl1178.89 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.473.1850 (16)134
C9—H9A···O10.972.382.7456 (17)102
C12—H12B···O1ii0.972.433.3426 (16)157
C5—H5···Cg2iii0.933.253.7651 (15)117
C8—H8B···Cg2iv0.973.094.0393 (12)168
C12—H12A···Cg2iv0.973.043.6878125

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2461).

References

  • Berkheij, M. (2005). Tetrahedron Lett.46, 2369–2371.
  • Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem.14, 1819–1826. [PubMed]
  • Drew, M. G. B. & Leslie, P. G. (1986). Acta Cryst. C42, 174–177.
  • Hulme, C. (1999). Tetrahedron Lett.40, 5295–5299.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Upadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem.12, 2225–2238. [PubMed]
  • Vacca, J. P., Dorsey, B. D., Schleif, W. A. & Levine, R. B. (1994). J. Med. Chem.37, 3443–3451. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography