PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m678–m679.
Published online 2009 May 23. doi:  10.1107/S1600536809018728
PMCID: PMC2969811

Bis(di-2-pyridylmethane­diol-κ3 N,O,N′)nickel(II) dinitrate

Abstract

The title compound, [Ni(C11H10N2O2)2](NO3)2, consists of an NiII atom coordinated by two tridentate chelating di-2-pyridylmethane­diol [(2-py)2C(OH)2] ligands. The NiII atom is located on an inversion center. The geometry around the NiII atom is distorted octa­hedral. The gem-diol (2-py)2C(OH)2 ligand adopts the coordination mode η111. The Ni—N and Ni—O bond lengths are typical for high-spin NiII in an octa­hedral environment [Ni—N = 2.094 (2) and 2.124 (3) Å, and Ni—O = 2.108 (3) Å]. One of the hydr­oxy H atoms is split over two positions which both inter­act with the nitrate anion. The occurence of different O—H(...)O hydrogen bonds leads to the formation of a layer parallel to the (101) plane.

Related literature

For background information, see: Efthymiou et al. (2006 [triangle]); Moragues-Cánovas et al. (2004 [triangle]); Papaefstathiou & Perlepes (2002 [triangle]); Papatriantafyllopoulou et al. (2007 [triangle]); Stoumpos et al. (2008 [triangle], 2009 [triangle]). For related structures, see: Li et al. (2005 [triangle]); Wang et al. (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m678-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H10N2O2)2](NO3)2
  • M r = 587.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m678-efi1.jpg
  • a = 8.4077 (9) Å
  • b = 15.5098 (16) Å
  • c = 9.5556 (10) Å
  • β = 94.644 (2)°
  • V = 1242.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.03 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 7646 measured reflections
  • 2442 independent reflections
  • 1826 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.135
  • S = 1.06
  • 2442 reflections
  • 179 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018728/dn2454sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018728/dn2454Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Korean Environment Ministry ‘ET–Human Resource Development Project’ and the Korean Science and Engineering Foundation (grant No. R01-2008-000-20704-0) is gratefully acknowledged.

supplementary crystallographic information

Comment

Di-2-pyridyl ketone ((py)2CO) has been employed to form structurally interesting new complexes with 3 d-metal ions (Stoumpos et al., 2009). Water and alcohols (ROH) have been shown to add to the carbonyl group forming the ligands (2-py)2C(OH)2 [the gem-diol form of (2-py)2CO] and (2-py)2C(OR)(OH) [the hemiacetal form of (2- py)2CO], respectively (Efthymiou et al., 2006). The neutral ligands (py)2C(OH)2 and (py)2C(OR)(OH) coordinate to the metal centres as N,N',O chelates (Papaefstathiou & Perlepes, 2002). The different interesting coordination modes have been seen when the ligands (py)2C(OH)2 and (py)2C(OR)(OH) are deprotonated to form mono- or dianion. The deprotonation of hydroxyl groups leads to a coordinative flexibility (Papatriantafyllopoulou et al., 2007; Stoumpos et al., 2008). Some NiII complexes of the neutral ligand, (py)2C(OH)2 have been structuraly characterized (Wang et al., 1986; Li et al., 2005), but no structure with a nitrate ion as the counter-ion has been reported to date.

The NiII atom is located on an inversion center and is coordinated by two tridentate chelating (2-py)2C(OH)2 ligand to form a distorted octahedral geometry. The gem-diol ligand (2-py)2C(OH)2 adopts the coordination mode η111 (Fig. 1). The Ni—N and Ni—O bond lengths are typical for high-spin Ni(II) in octahedral environments [Ni—N = 2.094 (2) and 2.124 (3) Å, Ni—O = 2.108 (3) Å] (Moragues-Cánovas et al., 2004). The hydrogen attached to O1 is splitting on two positions which are both in interaction with the NO3- anion. The O—H···O hydrogen bonds build up a layer parallel to the (101) plane (Table 1, Fig. 2).

Experimental

36.7 mg (0.125 mmol) of Ni(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of amixture of acetone, methanol and ethanol (2/2/2) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Hydroxyl H atom for O2 were treated as riding on the parent atom with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The hydroxyl H attached to O1 appears to be splitted on two positions. The coordinates of these two positions were initially refined with O—H restraints (0.85 Å) and Uiso(H) = 1.5Ueq(O). Then in the last stage of refinement these disordered H atoms were treated as riding on the O atom.

Figures

Fig. 1.
View of the title complex with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1 - ...
Fig. 2.
Packing view down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

[Ni(C11H10N2O2)2](NO3)2F(000) = 604
Mr = 587.15Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2352 reflections
a = 8.4077 (9) Åθ = 2.5–25.6°
b = 15.5098 (16) ŵ = 0.85 mm1
c = 9.5556 (10) ÅT = 293 K
β = 94.644 (2)°Plate, pale brown
V = 1242.0 (2) Å30.20 × 0.10 × 0.03 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
graphiteθmax = 26.0°, θmin = 2.5°
[var phi] and ω scansh = −11→11
7646 measured reflectionsk = −20→12
2442 independent reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0755P)2 + 0.0426P] where P = (Fo2 + 2Fc2)/3
2442 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.0334 (2)
N10.3937 (3)0.52480 (18)0.2948 (3)0.0389 (6)
N20.2830 (3)0.54084 (17)0.5703 (3)0.0347 (6)
O10.5183 (3)0.63487 (17)0.4873 (2)0.0574 (7)
H1A0.59050.65530.43700.086*0.50
H1B0.53050.65900.56880.086*0.50
O20.3337 (3)0.74355 (14)0.3938 (3)0.0539 (6)
H20.38660.77200.45300.081*
C10.3774 (4)0.4731 (2)0.1816 (4)0.0478 (9)
H10.41550.41690.18840.057*
C20.3053 (5)0.5019 (3)0.0558 (4)0.0639 (11)
H2A0.29270.4653−0.02140.077*
C30.2515 (5)0.5865 (3)0.0458 (4)0.0685 (12)
H30.20480.6076−0.03890.082*
C40.2677 (4)0.6386 (3)0.1615 (4)0.0562 (10)
H40.23100.69510.15730.067*
C50.3394 (4)0.6055 (2)0.2841 (3)0.0394 (7)
C60.3583 (4)0.6549 (2)0.4213 (3)0.0386 (7)
C70.2392 (3)0.61766 (19)0.5177 (3)0.0353 (7)
C80.0989 (4)0.6581 (2)0.5451 (4)0.0459 (8)
H80.07000.71120.50540.055*
C90.0030 (4)0.6160 (3)0.6345 (4)0.0594 (10)
H9−0.09190.64140.65690.071*
C100.0462 (4)0.5378 (3)0.6898 (4)0.0521 (9)
H10−0.01820.50970.75000.063*
C110.1873 (4)0.5008 (2)0.6552 (3)0.0434 (8)
H110.21640.44700.69160.052*
N30.3476 (4)0.7718 (2)0.7595 (4)0.0585 (8)
O30.4512 (4)0.71600 (19)0.7535 (3)0.0755 (9)
O40.3188 (5)0.8218 (2)0.6577 (3)0.1014 (12)
O50.2759 (4)0.7785 (2)0.8634 (4)0.0834 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0362 (3)0.0326 (3)0.0319 (3)0.0023 (2)0.0050 (2)−0.0004 (2)
N10.0396 (15)0.0451 (16)0.0326 (15)0.0016 (11)0.0079 (11)−0.0016 (11)
N20.0340 (13)0.0360 (15)0.0343 (14)0.0020 (11)0.0047 (11)−0.0012 (11)
O10.0609 (16)0.0526 (16)0.0587 (16)−0.0010 (12)0.0049 (13)−0.0001 (12)
O20.0675 (17)0.0363 (13)0.0578 (16)0.0069 (12)0.0054 (12)0.0050 (11)
C10.054 (2)0.050 (2)0.040 (2)0.0031 (16)0.0081 (16)−0.0051 (16)
C20.084 (3)0.072 (3)0.036 (2)−0.001 (2)0.0032 (19)−0.0137 (19)
C30.087 (3)0.079 (3)0.038 (2)0.011 (2)−0.004 (2)0.006 (2)
C40.072 (3)0.054 (2)0.043 (2)0.0102 (19)0.0005 (18)0.0078 (17)
C50.0418 (18)0.0411 (19)0.0363 (17)0.0017 (14)0.0095 (14)0.0007 (14)
C60.0390 (18)0.0349 (18)0.0422 (18)0.0031 (14)0.0059 (14)0.0046 (14)
C70.0365 (16)0.0357 (17)0.0336 (16)0.0002 (13)0.0026 (13)−0.0053 (13)
C80.0391 (18)0.048 (2)0.050 (2)0.0069 (15)−0.0001 (15)−0.0015 (15)
C90.040 (2)0.075 (3)0.065 (2)0.0062 (19)0.0128 (18)−0.010 (2)
C100.047 (2)0.064 (2)0.047 (2)−0.0077 (18)0.0155 (16)−0.0005 (18)
C110.0485 (18)0.0451 (19)0.0370 (17)−0.0049 (16)0.0053 (14)0.0002 (15)
N30.067 (2)0.047 (2)0.061 (2)−0.0010 (16)0.0000 (17)−0.0192 (17)
O30.077 (2)0.077 (2)0.0714 (19)0.0337 (16)0.0032 (15)−0.0251 (15)
O40.173 (4)0.056 (2)0.071 (2)0.016 (2)−0.014 (2)−0.0052 (16)
O50.071 (2)0.092 (2)0.092 (2)0.0066 (16)0.0358 (18)−0.0195 (18)

Geometric parameters (Å, °)

Ni1—N22.093 (2)C2—H2A0.9300
Ni1—N2i2.093 (2)C3—C41.367 (5)
Ni1—O12.102 (3)C3—H30.9300
Ni1—O1i2.102 (3)C4—C51.372 (4)
Ni1—N12.123 (3)C4—H40.9300
Ni1—N1i2.123 (3)C5—C61.515 (4)
N1—C51.334 (4)C6—C71.528 (4)
N1—C11.345 (4)C7—C81.380 (4)
N2—C71.333 (4)C8—C91.385 (5)
N2—C111.340 (4)C8—H80.9300
O1—C61.472 (4)C9—C101.360 (5)
O1—H1A0.8650C9—H90.9300
O1—H1B0.8625C10—C111.382 (5)
O2—C61.412 (4)C10—H100.9300
O2—H20.8200C11—H110.9300
C1—C21.377 (5)N3—O51.206 (4)
C1—H10.9300N3—O31.233 (4)
C2—C31.388 (5)N3—O41.253 (4)
N2—Ni1—N2i180.0C4—C3—C2119.5 (4)
N2—Ni1—O177.70 (10)C4—C3—H3120.3
N2i—Ni1—O1102.30 (10)C2—C3—H3120.3
N2—Ni1—O1i102.30 (10)C3—C4—C5118.5 (4)
N2i—Ni1—O1i77.70 (10)C3—C4—H4120.7
O1—Ni1—O1i180.0C5—C4—H4120.7
N2—Ni1—N185.93 (9)N1—C5—C4122.7 (3)
N2i—Ni1—N194.07 (9)N1—C5—C6113.4 (3)
O1—Ni1—N178.10 (10)C4—C5—C6123.9 (3)
O1i—Ni1—N1101.90 (10)O2—C6—O1113.6 (2)
N2—Ni1—N1i94.07 (9)O2—C6—C5109.1 (3)
N2i—Ni1—N1i85.93 (9)O1—C6—C5107.0 (2)
O1—Ni1—N1i101.90 (10)O2—C6—C7112.8 (2)
O1i—Ni1—N1i78.10 (10)O1—C6—C7106.4 (2)
N1—Ni1—N1i180.000 (1)C5—C6—C7107.6 (2)
C5—N1—C1119.1 (3)N2—C7—C8123.3 (3)
C5—N1—Ni1110.9 (2)N2—C7—C6113.0 (2)
C1—N1—Ni1130.0 (2)C8—C7—C6123.7 (3)
C7—N2—C11118.7 (3)C7—C8—C9116.8 (3)
C7—N2—Ni1111.76 (19)C7—C8—H8121.6
C11—N2—Ni1129.5 (2)C9—C8—H8121.6
C6—O1—Ni199.56 (17)C10—C9—C8120.7 (3)
C6—O1—H1A110.0C10—C9—H9119.7
Ni1—O1—H1A117.0C8—C9—H9119.7
C6—O1—H1B109.5C9—C10—C11119.0 (3)
Ni1—O1—H1B112.6C9—C10—H10120.5
H1A—O1—H1B107.8C11—C10—H10120.5
C6—O2—H2109.5N2—C11—C10121.5 (3)
N1—C1—C2121.2 (4)N2—C11—H11119.3
N1—C1—H1119.4C10—C11—H11119.3
C2—C1—H1119.4O5—N3—O3120.1 (4)
C1—C2—C3119.0 (4)O5—N3—O4120.5 (4)
C1—C2—H2A120.5O3—N3—O4119.4 (4)
C3—C2—H2A120.5

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O40.822.222.810 (4)129
O1—H1B···O30.862.132.933 (4)155
O1—H1A···O5ii0.872.042.884 (4)165

Symmetry codes: (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2454).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236–2252.
  • Li, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229–m231.
  • Moragues-Cánovas, M., Helliwell, M., Ricard, L., Rivière, E., Wernsdorfer, W., Brechin, E. & Mallah, T. (2004). Eur. J. Inorg. Chem. pp. 2219–2222.
  • Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem.23, 249–274.
  • Papatriantafyllopoulou, C., Efthymiou, C. G., Raptopoulou, C. P., Vicente, R., Manessi-Zoupa, E., Psycharis, V., Escuer, A. & Perlepes, S. P. (2007). J. Mol. Struct.829, 176–188.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoumpos, C. C., Gass, I. A., Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Lalioti, N., Brechin, E. K. & Perlepes, S. P. (2008). Inorg. Chem. Commun.11, 196–202.
  • Stoumpos, C. C., Lalioti, N., Gass, I. A., Gkotsis, K., Kitos, A. A., Sartzi, H., Milios, C. J., Raptopoulou, C. P., Terzis, A., Brechin, E. K. & Perlepes, S. P. (2009). Polyhedron doi:10.1016/j.poly.2008.12.001.
  • Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography