PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1388.
Published online 2009 May 23. doi:  10.1107/S1600536809019102
PMCID: PMC2969810

4-Meth­oxy-N′-(2-methoxy­benzyl­idene)benzohydrazide

Abstract

In the title compound, C16H16N2O3, the two benzene rings are inclined to one another by 75.4 (2)°, and the mol­ecule adopts an E configuration about the C=N bond. In the crystal structure, symmetry-related mol­ecules are linked via inter­molecular N—H(...)O hydrogen bonds, forming chains running parallel to the c axis.

Related literature

For related structures, see: Alhadi et al. (2008 [triangle]), Küçükgüzel et al. (2003 [triangle]); Mohd Lair et al. (2009a [triangle],b [triangle]); Li et al. (2009 [triangle]); Zhang et al. (2009 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1388-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3
  • M r = 284.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1388-efi1.jpg
  • a = 12.705 (1) Å
  • b = 16.053 (2) Å
  • c = 7.718 (1) Å
  • β = 107.233 (2)°
  • V = 1503.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.983, T max = 0.984
  • 8570 measured reflections
  • 3007 independent reflections
  • 1574 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.123
  • S = 0.98
  • 3007 reflections
  • 195 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019102/su2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019102/su2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrazone compounds are readily synthesized by the reaction of aldehydes with hydrazides. Recently, a large number of such compounds have been reported on (Alhadi et al., 2008; Küçükgüzel et al., 2003; Li et al., 2009; Zhang et al., 2009). In continuation of work in this area we report herein on the crystal structure of the title compound, a new hydrazone compound synthesized from the reaction of equimolar quantities of 2-methoxybenzaldehyde with 4-methoxybenzohydrazide in methanol.

The molecule structure of the title compound is illustrated in Fig. 1. The molecule adopts an E configuration about the C═N bond. The dihedral angle involving the two benzene rings is 75.4 (2)°. All the bond lengths are within normal values (Allen et al., 1987) and are comparable with those observed in the similar compounds (Mohd Lair et al., 2009a,b).

In the crystal structure of the compound, symmetry related molecules are linked through intermolecular N–H···O and N–H···N hydrogen bonds, forming chains running along the c axis (Table 1 and Fig. 2).

Experimental

2-Methoxybenzaldehyde (1.0 mmol, 136.2 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed in a methanol solution, and the mixture was refluxed for 1 h. Colorless block-shaped crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement

Atom H2 attached to N2 was located from a difference Fourier map and freely refined with Uiso(H) restrained to 0.08 Å2. The C-bound H-atoms were included in calculated positions and refined as riding atoms: d(C–H) = 0.93–0.96 Å, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probabilty level.
Fig. 2.
A view along the b axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1 for details). H-atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1023 reflections
a = 12.705 (1) Åθ = 2.5–24.6°
b = 16.053 (2) ŵ = 0.09 mm1
c = 7.718 (1) ÅT = 298 K
β = 107.233 (2)°Block, colorless
V = 1503.5 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3007 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
graphiteRint = 0.050
ω scansθmax = 26.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→13
Tmin = 0.983, Tmax = 0.984k = −19→17
8570 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0515P)2] where P = (Fo2 + 2Fc2)/3
3007 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.11626 (13)0.25479 (11)0.8800 (2)0.0459 (5)
N20.20751 (14)0.23123 (11)0.8290 (2)0.0464 (5)
O1−0.00123 (13)0.47737 (10)0.7280 (2)0.0698 (5)
O20.27806 (12)0.16021 (9)1.0915 (2)0.0572 (4)
O30.62405 (13)0.06696 (12)0.6746 (2)0.0832 (6)
C1−0.03802 (17)0.34548 (14)0.8236 (3)0.0484 (6)
C2−0.07099 (18)0.42835 (15)0.7881 (3)0.0532 (6)
C3−0.1678 (2)0.45577 (18)0.8150 (3)0.0689 (8)
H3−0.19000.51080.79060.083*
C4−0.2316 (2)0.4011 (2)0.8783 (3)0.0777 (8)
H4−0.29700.41990.89580.093*
C5−0.2007 (2)0.3201 (2)0.9158 (4)0.0782 (8)
H5−0.24400.28380.95930.094*
C6−0.10359 (18)0.29291 (16)0.8878 (3)0.0629 (7)
H6−0.08210.23780.91300.075*
C70.06430 (17)0.31710 (14)0.7935 (3)0.0477 (6)
H70.09180.34480.71030.057*
C80.28308 (17)0.18075 (13)0.9401 (3)0.0456 (5)
C90.37276 (17)0.15184 (13)0.8685 (3)0.0467 (6)
C100.47380 (19)0.13301 (16)0.9881 (3)0.0693 (7)
H100.48440.13931.11190.083*
C110.5597 (2)0.10505 (18)0.9289 (4)0.0772 (8)
H110.62760.09321.01210.093*
C120.54480 (19)0.09484 (15)0.7470 (3)0.0598 (7)
C130.44375 (19)0.11214 (15)0.6249 (3)0.0620 (7)
H130.43300.10450.50140.074*
C140.35890 (17)0.14068 (13)0.6849 (3)0.0527 (6)
H140.29120.15270.60130.063*
C150.7272 (2)0.04266 (18)0.7970 (4)0.0888 (9)
H15A0.76090.08970.86890.133*
H15B0.77450.02260.72950.133*
H15C0.7157−0.00070.87500.133*
C16−0.0288 (2)0.56282 (15)0.6910 (4)0.0780 (8)
H16A−0.09980.56700.60220.117*
H16B0.02550.58900.64540.117*
H16C−0.03090.59020.80060.117*
H20.2197 (19)0.2603 (13)0.737 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0431 (10)0.0511 (12)0.0482 (11)0.0074 (9)0.0208 (9)0.0010 (9)
N20.0464 (10)0.0510 (12)0.0481 (12)0.0108 (9)0.0236 (9)0.0054 (9)
O10.0741 (11)0.0536 (11)0.0878 (13)0.0155 (9)0.0333 (10)0.0116 (9)
O20.0637 (10)0.0662 (10)0.0492 (9)0.0145 (8)0.0284 (8)0.0100 (8)
O30.0635 (11)0.1180 (15)0.0804 (13)0.0380 (10)0.0401 (11)0.0142 (11)
C10.0489 (13)0.0565 (15)0.0416 (13)0.0076 (11)0.0162 (11)−0.0018 (11)
C20.0526 (14)0.0630 (16)0.0447 (14)0.0127 (13)0.0154 (11)−0.0016 (11)
C30.0665 (17)0.085 (2)0.0557 (16)0.0325 (15)0.0195 (14)0.0003 (13)
C40.0543 (16)0.121 (3)0.0627 (18)0.0267 (17)0.0252 (14)0.0017 (17)
C50.0587 (16)0.106 (2)0.080 (2)0.0090 (16)0.0360 (15)0.0130 (17)
C60.0578 (15)0.0715 (17)0.0648 (17)0.0077 (13)0.0266 (13)0.0044 (13)
C70.0484 (13)0.0530 (14)0.0458 (13)0.0035 (11)0.0202 (11)0.0012 (11)
C80.0450 (13)0.0454 (13)0.0493 (14)0.0025 (11)0.0182 (11)−0.0011 (11)
C90.0451 (13)0.0513 (14)0.0454 (13)0.0055 (10)0.0162 (11)−0.0009 (10)
C100.0563 (15)0.106 (2)0.0462 (15)0.0222 (15)0.0168 (13)0.0041 (14)
C110.0512 (15)0.120 (2)0.0616 (18)0.0299 (15)0.0180 (13)0.0122 (16)
C120.0540 (15)0.0704 (17)0.0627 (17)0.0178 (12)0.0292 (14)0.0071 (13)
C130.0608 (15)0.0799 (18)0.0499 (15)0.0157 (13)0.0235 (13)−0.0013 (12)
C140.0433 (13)0.0639 (15)0.0520 (15)0.0104 (11)0.0157 (11)−0.0005 (12)
C150.0634 (18)0.112 (2)0.102 (2)0.0400 (16)0.0407 (17)0.0286 (18)
C160.094 (2)0.0503 (17)0.085 (2)0.0136 (14)0.0189 (17)0.0054 (14)

Geometric parameters (Å, °)

N1—C71.273 (2)C6—H60.9300
N1—N21.383 (2)C7—H70.9300
N2—C81.351 (3)C8—C91.481 (3)
N2—H20.898 (9)C9—C101.375 (3)
O1—C21.365 (3)C9—C141.387 (3)
O1—C161.424 (3)C10—C111.378 (3)
O2—C81.234 (2)C10—H100.9300
O3—C121.364 (2)C11—C121.369 (3)
O3—C151.424 (3)C11—H110.9300
C1—C61.377 (3)C12—C131.377 (3)
C1—C21.397 (3)C13—C141.372 (3)
C1—C71.460 (3)C13—H130.9300
C2—C31.379 (3)C14—H140.9300
C3—C41.378 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.366 (4)C15—H15C0.9600
C4—H40.9300C16—H16A0.9600
C5—C61.384 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C7—N1—N2114.46 (17)C10—C9—C14117.94 (19)
C8—N2—N1118.77 (17)C10—C9—C8119.13 (19)
C8—N2—H2123.7 (15)C14—C9—C8122.9 (2)
N1—N2—H2115.9 (15)C9—C10—C11121.5 (2)
C2—O1—C16118.51 (18)C9—C10—H10119.2
C12—O3—C15117.7 (2)C11—C10—H10119.2
C6—C1—C2118.4 (2)C12—C11—C10119.8 (2)
C6—C1—C7121.9 (2)C12—C11—H11120.1
C2—C1—C7119.7 (2)C10—C11—H11120.1
O1—C2—C3124.4 (2)O3—C12—C11124.4 (2)
O1—C2—C1115.38 (19)O3—C12—C13115.9 (2)
C3—C2—C1120.2 (2)C11—C12—C13119.7 (2)
C4—C3—C2119.6 (3)C14—C13—C12120.2 (2)
C4—C3—H3120.2C14—C13—H13119.9
C2—C3—H3120.2C12—C13—H13119.9
C5—C4—C3121.3 (2)C13—C14—C9120.9 (2)
C5—C4—H4119.4C13—C14—H14119.6
C3—C4—H4119.4C9—C14—H14119.6
C4—C5—C6118.7 (3)O3—C15—H15A109.5
C4—C5—H5120.6O3—C15—H15B109.5
C6—C5—H5120.6H15A—C15—H15B109.5
C1—C6—C5121.7 (2)O3—C15—H15C109.5
C1—C6—H6119.2H15A—C15—H15C109.5
C5—C6—H6119.2H15B—C15—H15C109.5
N1—C7—C1120.65 (19)O1—C16—H16A109.5
N1—C7—H7119.7O1—C16—H16B109.5
C1—C7—H7119.7H16A—C16—H16B109.5
O2—C8—N2122.35 (19)O1—C16—H16C109.5
O2—C8—C9122.1 (2)H16A—C16—H16C109.5
N2—C8—C9115.56 (19)H16B—C16—H16C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.99 (1)2.859 (2)164 (2)

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2114).

References

  • Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem.38, 1005–1013. [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190. [PMC free article] [PubMed]
  • Li, M.-L., Huang, X. & Feng, R.-K. (2009). Acta Cryst. E65, o369. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography