PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m682.
Published online 2009 May 23. doi:  10.1107/S1600536809018194
PMCID: PMC2969809

Poly[diaqua­(μ-oxalato)(μ-2-oxidopyridinium-3-carboxyl­ato)lanthanum(III)]

Abstract

In the title complex, [La(C6H4NO3)(C2O4)(H2O)2]n, the LaIII ion is coordinated by eight O atoms from two 2-oxido­pyridinium-3-carboxyl­ate ligands, two oxalate ligands and two water mol­ecules in a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups link adjacent LaIII ions, forming two-dimensional layers that are further linked by N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For related structures, see: Huang et al. (2009 [triangle]); Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m682-scheme1.jpg

Experimental

Crystal data

  • [La(C6H4NO3)(C2O4)(H2O)2]
  • M r = 401.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m682-efi1.jpg
  • a = 8.0856 (18) Å
  • b = 8.5493 (19) Å
  • c = 9.388 (3) Å
  • α = 109.281 (3)°
  • β = 104.702 (3)°
  • γ = 104.940 (2)°
  • V = 549.5 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.93 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.460, T max = 0.512
  • 2843 measured reflections
  • 1946 independent reflections
  • 1870 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.069
  • S = 1.10
  • 1946 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.92 e Å−3
  • Δρmin = −1.37 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018194/bi2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018194/bi2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Southern Medical University for supporting this work.

supplementary crystallographic information

Comment

Whereas a large number of metal derivatives of oxalic acid have been reported, there are few examples of metal derivatives of 2-oxynicotinic acid and oxalic acid: the crystal structures of praseodymium (Xu et al., 2009) and dysprosium (Huang et al., 2009) derivatives have been reported only. We report here a lanthanum(III) complex formed by reaction of lanthanum nitrate, 2-oxynicotinic acid and oxalic acid under hydrothermal conditions.

As illustrated in Fig. 1, each LaIII centre adopts a distorted bicapped square-antiprismatic geometry, defined by eight O atoms from two 2-oxynicotinate ligands, two oxalate ligands, and two water molecules. The 2-oxynicotinate ligands and oxalate ligands link the LaIII ions to form layers in the bc plane in which the shortest La···La separation is 4.429 (3) Å. These layers are connected through O—H···O and N—H···O hydrogen bonding (Table 1) involving 2-oxynicotinate ligands, oxalate ligands and the coordinating water molecules, forming a three-dimensional supramolecular network motif (Fig. 2).

Experimental

A mixture of La2O3 (0.245 g, 0.75 mmol), 2-oxynicotinic acid (0.127 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), water (10 ml) and HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 4 days, then cooled to room temperature at 5 K h-1 to yield colourless block crystals.

Refinement

H atoms bound to C and N atoms were placed at calculated positions and refined as riding with N—H = 0.86 Å, C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C/N). H atoms of the water molecules were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.850 (1) Å and H···H = 1.350 (1) Å. In the final cycles of refinement, the O—H distances were normalized to 0.85 Å and the H atoms were refined as riding with Uiso(H) = 1.5 Ueq(O). Atom H4W forms a symmetrical H-bond about a centre of inversion and therefore is included with site occupancy factor 0.5. The alternative position H4W' points towards the centroid of an adjacent pyridyl ring.

Figures

Fig. 1.
The molecular structure showing displacement ellipsoids at 30% probability for non-H atoms. Symmetry codes: (i) -x, -y, -z; (ii) -x, 1 - y, 1 - z; (iii) -x, -y, 1 - z. The H atoms on O2W are disordered.
Fig. 2.
Packing diagram showing part of the 2-D layers (horizontal).

Crystal data

[La(C6H4NO3)(C2O4)(H2O)2]Z = 2
Mr = 401.06F(000) = 384
Triclinic, P1Dx = 2.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0856 (18) ÅCell parameters from 2827 reflections
b = 8.5493 (19) Åθ = 2.5–28.3°
c = 9.388 (3) ŵ = 3.93 mm1
α = 109.281 (3)°T = 293 K
β = 104.702 (3)°Block, colourless
γ = 104.940 (2)°0.20 × 0.18 × 0.17 mm
V = 549.5 (2) Å3

Data collection

Bruker APEXII CCD diffractometer1946 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −7→9
Tmin = 0.460, Tmax = 0.512k = −10→10
2843 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4664P] where P = (Fo2 + 2Fc2)/3
1946 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = −1.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.5156 (6)0.3528 (6)0.7873 (5)0.0193 (9)
C20.4448 (6)0.2225 (6)0.8439 (5)0.0190 (9)
C30.5510 (7)0.2276 (6)0.9869 (5)0.0278 (10)
H3A0.50430.14111.02090.033*
C40.7265 (7)0.3590 (7)1.0820 (6)0.0340 (12)
H4A0.79630.36171.17880.041*
C50.7924 (6)0.4829 (7)1.0291 (6)0.0310 (11)
H5A0.90850.57281.09100.037*
C60.2549 (6)0.0837 (6)0.7555 (5)0.0195 (9)
C70.0124 (6)0.0944 (6)0.0035 (5)0.0209 (9)
C80.0714 (6)0.5526 (5)0.4754 (5)0.0180 (8)
La10.14649 (3)0.16626 (3)0.39929 (2)0.01432 (11)
N10.6911 (5)0.4769 (5)0.8873 (5)0.0253 (8)
H1A0.73930.55610.85700.030*
O10.1395 (4)0.0964 (4)0.6424 (3)0.0215 (7)
O20.2093 (4)−0.0404 (4)0.7976 (4)0.0285 (7)
O30.4372 (4)0.3643 (4)0.6604 (4)0.0276 (7)
O40.1045 (5)0.2240 (4)0.1390 (4)0.0258 (7)
O5−0.0601 (5)0.1020 (4)−0.1273 (4)0.0275 (7)
O60.1897 (4)0.4906 (4)0.4461 (4)0.0238 (7)
O70.0581 (4)0.6932 (4)0.4686 (4)0.0263 (7)
O1W0.4501 (5)0.2684 (5)0.3496 (4)0.0400 (9)
H1W0.55120.32700.43090.060*
H2W0.47210.19110.28080.060*
O2W0.3055 (5)−0.0633 (5)0.4169 (4)0.0329 (8)
H3W0.2604−0.14910.43960.049*
H4W0.4214−0.02540.46670.049*0.50
H4W'0.2871−0.12020.31750.049*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.018 (2)0.016 (2)0.018 (2)0.0023 (17)0.0060 (17)0.0040 (17)
C20.017 (2)0.017 (2)0.0160 (19)0.0019 (17)0.0018 (17)0.0062 (17)
C30.027 (2)0.023 (2)0.024 (2)0.002 (2)0.000 (2)0.012 (2)
C40.024 (3)0.034 (3)0.024 (2)0.001 (2)−0.011 (2)0.012 (2)
C50.017 (2)0.029 (3)0.029 (2)0.001 (2)−0.0042 (19)0.006 (2)
C60.016 (2)0.020 (2)0.016 (2)−0.0004 (17)0.0025 (17)0.0074 (17)
C70.021 (2)0.024 (2)0.017 (2)0.0035 (18)0.0066 (18)0.0103 (18)
C80.014 (2)0.014 (2)0.017 (2)0.0005 (17)−0.0001 (16)0.0029 (17)
La10.01183 (15)0.01383 (16)0.01434 (15)0.00163 (11)0.00223 (11)0.00694 (11)
N10.0186 (19)0.022 (2)0.027 (2)−0.0013 (16)0.0045 (16)0.0110 (17)
O10.0154 (15)0.0253 (17)0.0172 (15)0.0003 (13)−0.0005 (12)0.0118 (13)
O20.0215 (17)0.0269 (18)0.0325 (18)0.0002 (14)0.0028 (14)0.0192 (15)
O30.0211 (17)0.0312 (18)0.0235 (16)−0.0002 (14)0.0014 (14)0.0163 (14)
O40.0326 (19)0.0190 (16)0.0157 (15)−0.0002 (14)0.0040 (14)0.0068 (13)
O50.0369 (19)0.0238 (16)0.0163 (15)0.0085 (15)0.0030 (14)0.0093 (13)
O60.0193 (16)0.0192 (16)0.0336 (17)0.0070 (13)0.0107 (14)0.0116 (14)
O70.0294 (18)0.0209 (16)0.0373 (18)0.0110 (14)0.0169 (15)0.0177 (14)
O1W0.0197 (18)0.057 (2)0.0307 (19)0.0001 (17)0.0090 (15)0.0158 (18)
O2W0.0285 (18)0.040 (2)0.043 (2)0.0178 (16)0.0155 (16)0.0276 (17)

Geometric parameters (Å, °)

C1—O31.248 (5)La1—O62.574 (3)
C1—N11.382 (6)La1—O5i2.582 (3)
C1—C21.437 (6)La1—O32.585 (3)
C2—C31.377 (6)La1—O1W2.598 (3)
C2—C61.489 (6)La1—O42.606 (3)
C3—C41.395 (7)La1—O7ii2.608 (3)
C3—H3A0.930La1—O1iii2.612 (3)
C4—C51.357 (7)La1—O2W2.634 (3)
C4—H4A0.930La1—O2iii2.691 (3)
C5—N11.351 (6)N1—H1A0.860
C5—H5A0.930O1—La1iii2.612 (3)
C6—O21.252 (5)O2—La1iii2.691 (3)
C6—O11.279 (5)O5—La1i2.582 (3)
C7—O41.250 (5)O7—La1ii2.608 (3)
C7—O51.251 (5)O1W—H1W0.850
C7—C7i1.550 (9)O1W—H2W0.850
C8—O61.253 (5)O2W—H3W0.850
C8—O71.255 (5)O2W—H4W0.850
C8—C8ii1.537 (8)O2W—H4W'0.850
La1—O12.553 (3)
O3—C1—N1118.0 (4)O1—La1—O1iii61.92 (11)
O3—C1—C2127.4 (4)O6—La1—O1iii130.59 (10)
N1—C1—C2114.6 (4)O5i—La1—O1iii70.65 (10)
C3—C2—C1120.0 (4)O3—La1—O1iii127.57 (9)
C3—C2—C6118.0 (4)O1W—La1—O1iii148.31 (12)
C1—C2—C6121.9 (4)O4—La1—O1iii111.41 (10)
C2—C3—C4121.8 (4)O7ii—La1—O1iii72.58 (10)
C2—C3—H3A119.1O1—La1—O2W68.95 (10)
C4—C3—H3A119.1O6—La1—O2W147.03 (10)
C5—C4—C3118.1 (4)O5i—La1—O2W64.56 (10)
C5—C4—H4A121.0O3—La1—O2W78.73 (11)
C3—C4—H4A121.0O1W—La1—O2W72.87 (12)
N1—C5—C4120.6 (4)O4—La1—O2W115.38 (10)
N1—C5—H5A119.7O7ii—La1—O2W138.08 (10)
C4—C5—H5A119.7O1iii—La1—O2W81.33 (10)
O2—C6—O1121.1 (4)O1—La1—O2iii105.06 (9)
O2—C6—C2119.0 (4)O6—La1—O2iii92.61 (10)
O1—C6—C2119.8 (4)O5i—La1—O2iii66.21 (10)
O4—C7—O5126.4 (4)O3—La1—O2iii157.15 (11)
O4—C7—C7i116.9 (4)O1W—La1—O2iii131.48 (11)
O5—C7—C7i116.7 (5)O4—La1—O2iii67.14 (10)
O6—C8—O7126.1 (4)O7ii—La1—O2iii65.52 (10)
O6—C8—C8ii117.3 (4)O1iii—La1—O2iii49.08 (9)
O7—C8—C8ii116.6 (4)O2W—La1—O2iii118.71 (11)
O1—La1—O6115.01 (10)C5—N1—C1124.9 (4)
O1—La1—O5i116.73 (10)C5—N1—H1A117.6
O6—La1—O5i127.50 (10)C1—N1—H1A117.6
O1—La1—O365.68 (10)C6—O1—La1135.9 (3)
O6—La1—O374.38 (10)C6—O1—La1iii96.3 (3)
O5i—La1—O3136.55 (11)La1—O1—La1iii118.08 (11)
O1—La1—O1W121.99 (10)C6—O2—La1iii93.3 (2)
O6—La1—O1W78.71 (11)C1—O3—La1136.4 (3)
O5i—La1—O1W81.66 (11)C7—O4—La1118.5 (3)
O3—La1—O1W65.28 (11)C7—O5—La1i119.4 (3)
O1—La1—O4172.10 (10)C8—O6—La1120.7 (3)
O6—La1—O465.38 (10)C8—O7—La1ii119.8 (3)
O5i—La1—O462.14 (10)La1—O1W—H1W118.9
O3—La1—O4120.98 (10)La1—O1W—H2W118.3
O1W—La1—O465.90 (11)H1W—O1W—H2W105.2
O1—La1—O7ii69.92 (10)La1—O2W—H3W122.1
O6—La1—O7ii62.13 (9)La1—O2W—H4W119.6
O5i—La1—O7ii131.12 (11)H3W—O2W—H4W105.2
O3—La1—O7ii91.67 (11)La1—O2W—H4W'101.0
O1W—La1—O7ii139.07 (11)H3W—O2W—H4W'100.6
O4—La1—O7ii104.60 (10)H4W—O2W—H4W'105.2
O3—C1—C2—C3179.2 (4)N1—C1—O3—La1168.2 (3)
N1—C1—C2—C3−0.4 (6)C2—C1—O3—La1−11.5 (7)
O3—C1—C2—C6−3.1 (7)O1—La1—O3—C122.7 (4)
N1—C1—C2—C6177.2 (4)O6—La1—O3—C1150.2 (4)
C1—C2—C3—C41.3 (7)O5i—La1—O3—C1−81.2 (4)
C6—C2—C3—C4−176.5 (4)O1W—La1—O3—C1−125.3 (4)
C2—C3—C4—C5−0.6 (8)O4—La1—O3—C1−162.1 (4)
C3—C4—C5—N1−0.8 (8)O7ii—La1—O3—C189.7 (4)
C3—C2—C6—O2−11.8 (6)O1iii—La1—O3—C120.6 (5)
C1—C2—C6—O2170.5 (4)O2W—La1—O3—C1−49.1 (4)
C3—C2—C6—O1165.6 (4)O2iii—La1—O3—C192.9 (5)
C1—C2—C6—O1−12.0 (6)O5—C7—O4—La1160.6 (4)
C4—C5—N1—C11.7 (7)C7i—C7—O4—La1−20.2 (6)
O3—C1—N1—C5179.3 (4)O6—La1—O4—C7−157.7 (3)
C2—C1—N1—C5−1.0 (6)O5i—La1—O4—C720.9 (3)
O2—C6—O1—La1−137.1 (4)O3—La1—O4—C7150.7 (3)
C2—C6—O1—La145.4 (6)O1W—La1—O4—C7114.1 (3)
O2—C6—O1—La1iii5.4 (4)O7ii—La1—O4—C7−108.3 (3)
C2—C6—O1—La1iii−172.0 (3)O1iii—La1—O4—C7−31.6 (4)
O6—La1—O1—C6−98.9 (4)O2W—La1—O4—C758.8 (3)
O5i—La1—O1—C690.3 (4)O2iii—La1—O4—C7−53.3 (3)
O3—La1—O1—C6−41.3 (4)O4—C7—O5—La1i159.7 (4)
O1W—La1—O1—C6−6.8 (4)C7i—C7—O5—La1i−19.6 (6)
O7ii—La1—O1—C6−142.8 (4)O7—C8—O6—La1−165.0 (3)
O1iii—La1—O1—C6136.7 (5)C8ii—C8—O6—La115.1 (6)
O2W—La1—O1—C645.5 (4)O1—La1—O6—C8−63.1 (3)
O2iii—La1—O1—C6160.9 (4)O5i—La1—O6—C8106.6 (3)
O6—La1—O1—La1iii124.39 (13)O3—La1—O6—C8−116.0 (3)
O5i—La1—O1—La1iii−46.43 (16)O1W—La1—O6—C8176.7 (3)
O3—La1—O1—La1iii−178.07 (17)O4—La1—O6—C8108.2 (3)
O1W—La1—O1—La1iii−143.50 (14)O7ii—La1—O6—C8−15.6 (3)
O7ii—La1—O1—La1iii80.43 (14)O1iii—La1—O6—C810.4 (4)
O1iii—La1—O1—La1iii0.0O2W—La1—O6—C8−152.6 (3)
O2W—La1—O1—La1iii−91.27 (15)O2iii—La1—O6—C844.9 (3)
O2iii—La1—O1—La1iii24.16 (15)O6—C8—O7—La1ii−165.3 (3)
O1—C6—O2—La1iii−5.2 (4)C8ii—C8—O7—La1ii14.7 (6)
C2—C6—O2—La1iii172.2 (3)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iv0.861.962.789 (5)162
O1W—H1W···O6iv0.852.012.805 (5)155
O2W—H4W···O2Wv0.852.002.853 (7)180
O2W—H3W···O7vi0.851.972.753 (5)152

Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2356).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177–m178. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Y.-J., Yang, X.-X. & Zhao, H.-B. (2009). Acta Cryst. E65, m310. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography