PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): i43.
Published online 2009 May 14. doi:  10.1107/S1600536809016638
PMCID: PMC2969807

Pr5Si3N9

Abstract

Single crystals of Pr5Si3N9, penta­praseodymium trisilicon nona­nitride, were obtained by the reaction of elemental praseo­dymium with silicon diimide in a radio-frequency furnace at 1873 K. The crystal structure consists of a chain-like Si—N substructure of corner-sharing SiN4 tetra­hedra. An additional Q 1-type [SiN4] unit is attached to every second tetra­hedron directed alternately in opposite directions. The resulting branched chains inter­lock with each other, building up a three-dimensional structure. The central atoms of the Q 1-type [SiN4] unit and of its attached tetra­hedron are situated on a mirror plane, as are two of the four crystallographically unique Pr3+ ions. The latter are coordinated by six to ten N atoms, with Pr—N distances similar to those of other rare earth nitridosilicates.

Related literature

For isotypic compounds Ln 5Si3N9 (Ln = La, Ce), see: Schmolke et al. (2009 [triangle]). For experimental details, see: Schnick & Huppertz (1997 [triangle]); Schnick et al. (1999 [triangle]). Typical atomic distances for rare earth nitridosilicates have been reported by Schnick (2001 [triangle]) and Lissner & Schleid (2004 [triangle]).

Experimental

Crystal data

  • Pr5Si3N9
  • M r = 914.91
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i43-efi1.jpg
  • a = 10.512 (2) Å
  • b = 11.243 (2) Å
  • c = 15.773 (3) Å
  • V = 1864.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 26.01 mm−1
  • T = 293 K
  • 0.17 × 0.10 × 0.08 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: multi-scan (XPREP; Sheldrick, 2008 [triangle]) T min = 0.040, T max = 0.125
  • 9626 measured reflections
  • 1480 independent reflections
  • 1133 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 0.97
  • 1480 reflections
  • 90 parameters
  • Δρmax = 2.10 e Å−3
  • Δρmin = −2.31 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016638/wm2229sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016638/wm2229Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Thomas Miller and Dr Oliver Oeckler for performing the single-crystal X-ray diffractometry. Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound is a branched chain-like nitridosilicate isotypic to Ln5Si3N9 (Ln = La, Ce) described by Schmolke et al. (2009). Except for Ln5Si3N9 (Ln = La, Ce, Pr), no other chain-like nitridosilicates have been observed so far. The single chains in Pr5Si3N9 run along [100] and are built up of corner sharing [SiN4] tetrahedra, whereas every second tetrahedron is additionally connected to a Q1-type tetrahedron. These direct alternately in opposing directions (Fig. 1). Thereby the Si2 and Si3 atoms are located on a mirrow plane which is co-planar to [100]. Due to the constitution of the terminal tetrahedra the chains interlock zipper-like with each other (Fig. 2). The Pr3+ ions (yellow) are located between the chains. The coordination numbers of the Pr3+ ions range between six (for Pr4) and ten (for Pr 3) with Pr—N distances varying from 2.310 (11) to 3.053 (2) Å. The geometric parameters of Pr5Si3N9 are in the usual ranges and correspond with those of the isotypic compounds Ln5Si3N9 (Ln = La, Ce) and other nitridosilicates (Schnick, 2001; Lissner & Schleid, 2004).

Experimental

Pr5Si3N9 was synthesized by the reaction of Pr (swarf, 99.9%, Chempur, Karlsruhe) and silicon diimide (Schnick & Huppertz, 1997) which were thoroughly mixed in a glove box (Unilab, MBraun). The mixture was heated in a tungsten crucible in a radio-frequency furnace (Schnick et al., 1999) under purified N2 up to 1873 K within 1 h. This temperature was retained for 5 h, and the crucible thereafter cooled down to 1073 K in 35 h before quenching to room temperature within 1 h. Pr5Si3N9 could be obtained as air-sensitive dark-yellow crystals with PrN as by-product.

Refinement

In the final Fourier map the highest peak is 0.19 Å from atom Si1 and the deepest hole is 0.64 Å from atom Pr4.

Figures

Fig. 1.
Presentation of the Si—N substructure, with anisotropic displacement parameters drawn at the 50% probability level. SiO4 tetrahedra are depicted purple for Si1, light blue for Si2 and dark blue for Si3.
Fig. 2.
View along [010] illustrating the resulting three-dimensional structure. Pr3+ ions are depicted yellow, with anisotropic displacement parameters drawn at the 50% probability level.

Crystal data

Pr5Si3N9F(000) = 3200
Mr = 914.91Dx = 6.520 Mg m3
Orthorhombic, CmceMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 bc 2Cell parameters from 5699 reflections
a = 10.512 (2) Åθ = 2.6–30.5°
b = 11.243 (2) ŵ = 26.01 mm1
c = 15.773 (3) ÅT = 293 K
V = 1864.2 (6) Å3Block, yellow
Z = 80.17 × 0.10 × 0.08 mm

Data collection

Stoe IPDS diffractometer1480 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
graphiteRint = 0.080
ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan (XPREP; Sheldrick, 2008)h = −12→14
Tmin = 0.040, Tmax = 0.125k = −15→15
9626 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037w = 1/[σ2(Fo2) + (0.0626P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 0.97Δρmax = 2.10 e Å3
1480 reflectionsΔρmin = −2.31 e Å3
90 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00090 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pr10.00000.01304 (6)0.33611 (4)0.01605 (18)
Pr2−0.21211 (5)−0.25683 (4)0.37015 (3)0.01847 (17)
Pr30.0000−0.00567 (6)0.11240 (4)0.01844 (19)
Pr40.20546 (7)0.00000.50000.01756 (19)
Si10.0000−0.2598 (3)0.5166 (2)0.0148 (6)
Si20.00000.2724 (3)0.2739 (2)0.0148 (6)
Si3−0.2500−0.0361 (3)0.25000.0146 (6)
N10.00000.1552 (10)0.2035 (7)0.020 (2)
N20.00000.2233 (10)0.3761 (6)0.024 (2)
N30.1254 (8)−0.1348 (7)0.2416 (5)0.0201 (14)
N40.2371 (7)0.0349 (7)0.3472 (5)0.0176 (13)
N5−0.1321 (8)−0.3528 (8)0.5006 (5)0.0226 (15)
N60.0000−0.1350 (10)0.4519 (7)0.022 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.0137 (3)0.0145 (3)0.0199 (3)0.0000.000−0.0005 (2)
Pr20.0190 (3)0.0167 (3)0.0197 (3)−0.00032 (16)−0.00156 (15)0.00234 (15)
Pr30.0220 (4)0.0160 (3)0.0173 (3)0.0000.000−0.0013 (2)
Pr40.0173 (4)0.0177 (3)0.0177 (3)0.0000.0000.0001 (2)
Si10.0176 (16)0.0136 (13)0.0133 (12)0.0000.0000.0007 (10)
Si20.0120 (15)0.0141 (14)0.0184 (14)0.0000.000−0.0014 (10)
Si30.0113 (14)0.0164 (14)0.0160 (14)0.0000.0011 (10)0.000
N10.020 (6)0.019 (4)0.022 (5)0.0000.000−0.005 (4)
N20.041 (7)0.018 (5)0.012 (4)0.0000.000−0.002 (3)
N30.013 (3)0.020 (3)0.027 (4)−0.001 (3)0.004 (3)−0.003 (3)
N40.013 (3)0.024 (3)0.016 (3)−0.005 (3)0.001 (2)−0.001 (3)
N50.019 (4)0.024 (4)0.024 (3)−0.004 (3)−0.007 (3)0.005 (3)
N60.018 (6)0.024 (5)0.024 (5)0.0000.0000.001 (4)

Geometric parameters (Å, °)

Pr1—N22.446 (12)Pr4—Pr2xii3.5243 (7)
Pr1—N3i2.593 (8)Pr4—Pr2i3.5408 (7)
Pr1—N32.593 (8)Pr4—Pr2xv3.5408 (7)
Pr1—N62.471 (12)Si1—N61.735 (12)
Pr1—N42.511 (8)Si1—N2xv1.742 (10)
Pr1—N4i2.511 (8)Si1—N51.756 (8)
Pr1—N12.633 (11)Si1—N5i1.756 (8)
Pr1—Si33.0093 (8)Si1—Pr3xvi3.039 (3)
Pr1—Si3ii3.0093 (8)Si1—Pr2i3.211 (2)
Pr1—Si23.077 (3)Si1—Pr3iii3.432 (3)
Pr1—Si2iii3.214 (3)Si2—N21.704 (11)
Pr1—Pr43.3717 (8)Si2—N11.723 (11)
Pr2—N3i2.613 (8)Si2—N3ix1.699 (8)
Pr2—N4iv2.429 (8)Si2—N3x1.699 (8)
Pr2—N52.470 (8)Si2—Pr3ix3.073 (3)
Pr2—N1iii2.702 (6)Si2—Pr2ix3.200 (2)
Pr2—N5v2.891 (9)Si2—Pr2x3.200 (2)
Pr2—N62.917 (8)Si2—Pr1ix3.214 (3)
Pr2—N3vi2.812 (8)Si2—Pr2xiii3.4018 (16)
Pr2—Si33.148 (3)Si2—Pr2xvii3.4018 (16)
Pr2—Si2iii3.200 (2)Si3—N3vi1.722 (8)
Pr2—Si13.211 (2)Si3—N3i1.722 (8)
Pr2—Si2iv3.4018 (16)Si3—N4vi1.733 (7)
Pr2—Pr4iv3.5243 (7)Si3—N4i1.733 (7)
Pr3—N12.310 (11)Si3—Pr1vi3.0093 (8)
Pr3—N5vii2.752 (8)Si3—Pr2xviii3.148 (3)
Pr3—N5viii2.752 (8)Si3—Pr3vi3.4254 (7)
Pr3—N5ix2.839 (9)N1—Pr2ix2.702 (6)
Pr3—N5x2.839 (9)N1—Pr2x2.702 (6)
Pr3—N4xi2.873 (8)N2—Si1xv1.742 (10)
Pr3—N4vi2.873 (8)N3—Si3ii1.722 (8)
Pr3—Si1viii3.039 (3)N3—Si2iii1.699 (8)
Pr3—Si2iii3.073 (3)N3—Pr2i2.613 (8)
Pr3—Si3ii3.4254 (7)N3—Pr2ii2.812 (8)
Pr3—Si33.4254 (7)N4—Si3ii1.733 (7)
Pr3—Si1ix3.432 (3)N4—Pr2xiii2.429 (8)
Pr4—N5xii2.378 (8)N4—Pr3ii2.873 (8)
Pr4—N5xiii2.378 (8)N5—Pr4iv2.378 (8)
Pr4—N42.465 (7)N5—Pr3xvi2.752 (8)
Pr4—N4xiv2.465 (7)N5—Pr3iii2.839 (9)
Pr4—N62.747 (7)N5—Pr2v2.891 (9)
Pr4—N6xv2.747 (7)N6—Pr4xv2.747 (7)
Pr4—Pr1xv3.3717 (8)N6—Pr2i2.917 (8)
Pr4—Pr2xiii3.5243 (7)
N2—Pr1—N3i140.1 (2)N4—Pr4—Pr2xiii43.52 (18)
N2—Pr1—N3140.1 (2)N4xiv—Pr4—Pr2xiii131.21 (19)
N3i—Pr1—N361.1 (4)N6—Pr4—Pr2xiii117.5 (2)
N2—Pr1—N6117.4 (4)N6xv—Pr4—Pr2xiii85.7 (2)
N3i—Pr1—N689.6 (3)Pr1—Pr4—Pr2xiii71.228 (16)
N3—Pr1—N689.6 (3)Pr1xv—Pr4—Pr2xiii129.553 (18)
N2—Pr1—N483.53 (18)N5xii—Pr4—Pr2xii44.41 (19)
N3i—Pr1—N4127.4 (3)N5xiii—Pr4—Pr2xii111.17 (19)
N3—Pr1—N466.3 (3)N4—Pr4—Pr2xii131.21 (19)
N6—Pr1—N490.85 (18)N4xiv—Pr4—Pr2xii43.52 (18)
N2—Pr1—N4i83.53 (18)N6—Pr4—Pr2xii85.7 (2)
N3i—Pr1—N4i66.3 (3)N6xv—Pr4—Pr2xii117.5 (2)
N3—Pr1—N4i127.4 (3)Pr1—Pr4—Pr2xii129.553 (18)
N6—Pr1—N4i90.85 (18)Pr1xv—Pr4—Pr2xii71.228 (16)
N4—Pr1—N4i166.2 (3)Pr2xiii—Pr4—Pr2xii151.53 (3)
N2—Pr1—N167.5 (3)N5xii—Pr4—Pr2i54.3 (2)
N3i—Pr1—N186.1 (3)N5xiii—Pr4—Pr2i123.7 (2)
N3—Pr1—N186.1 (3)N4—Pr4—Pr2i64.00 (18)
N6—Pr1—N1175.0 (4)N4xiv—Pr4—Pr2i115.66 (18)
N4—Pr1—N189.75 (17)N6—Pr4—Pr2i53.49 (19)
N4i—Pr1—N189.75 (17)N6xv—Pr4—Pr2i128.75 (19)
N2—Pr1—Si3107.07 (11)Pr1—Pr4—Pr2i66.712 (16)
N3i—Pr1—Si334.80 (19)Pr1xv—Pr4—Pr2i114.875 (19)
N3—Pr1—Si393.83 (19)Pr2xiii—Pr4—Pr2i106.955 (19)
N6—Pr1—Si3102.12 (13)Pr2xii—Pr4—Pr2i72.463 (19)
N4—Pr1—Si3156.38 (16)N5xii—Pr4—Pr2xv123.7 (2)
N4i—Pr1—Si335.15 (17)N5xiii—Pr4—Pr2xv54.3 (2)
N1—Pr1—Si375.69 (11)N4—Pr4—Pr2xv115.66 (18)
N2—Pr1—Si3ii107.07 (11)N4xiv—Pr4—Pr2xv64.00 (18)
N3i—Pr1—Si3ii93.83 (19)N6—Pr4—Pr2xv128.75 (19)
N3—Pr1—Si3ii34.80 (19)N6xv—Pr4—Pr2xv53.49 (19)
N6—Pr1—Si3ii102.12 (13)Pr1—Pr4—Pr2xv114.875 (19)
N4—Pr1—Si3ii35.15 (17)Pr1xv—Pr4—Pr2xv66.712 (16)
N4i—Pr1—Si3ii156.38 (16)Pr2xiii—Pr4—Pr2xv72.463 (19)
N1—Pr1—Si3ii75.69 (11)Pr2xii—Pr4—Pr2xv106.955 (19)
Si3—Pr1—Si3ii121.68 (5)Pr2i—Pr4—Pr2xv177.74 (3)
N2—Pr1—Si233.5 (2)N6—Si1—N2xv112.4 (6)
N3i—Pr1—Si2115.08 (18)N6—Si1—N5113.4 (3)
N3—Pr1—Si2115.08 (18)N2xv—Si1—N5106.3 (4)
N6—Pr1—Si2150.9 (3)N6—Si1—N5i113.4 (3)
N4—Pr1—Si285.94 (18)N2xv—Si1—N5i106.3 (4)
N4i—Pr1—Si285.94 (18)N5—Si1—N5i104.5 (6)
N1—Pr1—Si234.0 (2)N6—Si1—Pr3xvi173.8 (4)
Si3—Pr1—Si291.71 (7)N2xv—Si1—Pr3xvi73.8 (4)
Si3ii—Pr1—Si291.71 (7)N5—Si1—Pr3xvi63.6 (3)
N2—Pr1—Si2iii162.3 (2)N5i—Si1—Pr3xvi63.6 (3)
N3i—Pr1—Si2iii31.79 (18)N6—Si1—Pr264.4 (3)
N3—Pr1—Si2iii31.79 (18)N2xv—Si1—Pr2134.16 (11)
N6—Pr1—Si2iii80.3 (3)N5—Si1—Pr249.7 (3)
N4—Pr1—Si2iii96.89 (17)N5i—Si1—Pr2116.8 (3)
N4i—Pr1—Si2iii96.89 (17)Pr3xvi—Si1—Pr2111.53 (8)
N1—Pr1—Si2iii94.7 (2)N6—Si1—Pr2i64.4 (3)
Si3—Pr1—Si2iii66.54 (6)N2xv—Si1—Pr2i134.16 (11)
Si3ii—Pr1—Si2iii66.54 (6)N5—Si1—Pr2i116.8 (3)
Si2—Pr1—Si2iii128.72 (3)N5i—Si1—Pr2i49.7 (3)
N2—Pr1—Pr481.05 (18)Pr3xvi—Si1—Pr2i111.53 (8)
N3i—Pr1—Pr4137.62 (17)Pr2—Si1—Pr2i87.97 (8)
N3—Pr1—Pr495.02 (19)N6—Si1—Pr3iii107.6 (4)
N6—Pr1—Pr453.42 (16)N2xv—Si1—Pr3iii140.0 (4)
N4—Pr1—Pr446.78 (16)N5—Si1—Pr3iii55.6 (3)
N4i—Pr1—Pr4125.95 (16)N5i—Si1—Pr3iii55.6 (3)
N1—Pr1—Pr4129.46 (13)Pr3xvi—Si1—Pr3iii66.18 (7)
Si3—Pr1—Pr4153.83 (4)Pr2—Si1—Pr3iii65.29 (6)
Si3ii—Pr1—Pr477.212 (18)Pr2i—Si1—Pr3iii65.29 (6)
Si2—Pr1—Pr4106.60 (5)N2—Si2—N1111.2 (6)
Si2iii—Pr1—Pr4112.17 (4)N2—Si2—N3ix109.6 (4)
N3i—Pr2—N4iv117.8 (2)N1—Si2—N3ix112.2 (4)
N3i—Pr2—N5139.2 (3)N2—Si2—N3x109.6 (4)
N4iv—Pr2—N577.2 (3)N1—Si2—N3x112.2 (4)
N3i—Pr2—N1iii64.6 (3)N3ix—Si2—N3x101.8 (6)
N4iv—Pr2—N1iii76.4 (3)N2—Si2—Pr3ix73.2 (4)
N5—Pr2—N1iii85.3 (3)N1—Si2—Pr3ix175.6 (4)
N3i—Pr2—N5v121.4 (2)N3ix—Si2—Pr3ix65.5 (3)
N4iv—Pr2—N5v113.1 (2)N3x—Si2—Pr3ix65.5 (3)
N5—Pr2—N5v78.0 (3)N2—Si2—Pr152.5 (4)
N1iii—Pr2—N5v157.9 (3)N1—Si2—Pr158.7 (4)
N3i—Pr2—N680.2 (3)N3ix—Si2—Pr1128.9 (3)
N4iv—Pr2—N6133.4 (3)N3x—Si2—Pr1128.9 (3)
N5—Pr2—N665.0 (3)Pr3ix—Si2—Pr1125.69 (11)
N1iii—Pr2—N674.4 (3)N2—Si2—Pr2ix129.66 (18)
N5v—Pr2—N685.5 (2)N1—Si2—Pr2ix57.6 (2)
N3i—Pr2—N3vi57.9 (3)N3ix—Si2—Pr2ix120.1 (3)
N4iv—Pr2—N3vi104.1 (2)N3x—Si2—Pr2ix54.6 (3)
N5—Pr2—N3vi160.4 (3)Pr3ix—Si2—Pr2ix119.86 (7)
N1iii—Pr2—N3vi114.2 (3)Pr1—Si2—Pr2ix97.41 (8)
N5v—Pr2—N3vi83.7 (2)N2—Si2—Pr2x129.66 (18)
N6—Pr2—N3vi120.8 (3)N1—Si2—Pr2x57.6 (2)
N3i—Pr2—Si333.16 (18)N3ix—Si2—Pr2x54.6 (3)
N4iv—Pr2—Si3129.97 (18)N3x—Si2—Pr2x120.1 (3)
N5—Pr2—Si3152.7 (2)Pr3ix—Si2—Pr2x119.86 (7)
N1iii—Pr2—Si397.7 (2)Pr1—Si2—Pr2x97.41 (8)
N5v—Pr2—Si390.97 (16)Pr2ix—Si2—Pr2x88.33 (8)
N6—Pr2—Si389.6 (2)N2—Si2—Pr1ix141.6 (4)
N3vi—Pr2—Si332.97 (16)N1—Si2—Pr1ix107.2 (4)
N3i—Pr2—Si2iii32.00 (18)N3ix—Si2—Pr1ix53.5 (3)
N4iv—Pr2—Si2iii98.41 (18)N3x—Si2—Pr1ix53.5 (3)
N5—Pr2—Si2iii113.5 (2)Pr3ix—Si2—Pr1ix68.39 (7)
N1iii—Pr2—Si2iii32.6 (2)Pr1—Si2—Pr1ix165.93 (11)
N5v—Pr2—Si2iii148.38 (18)Pr2ix—Si2—Pr1ix72.74 (6)
N6—Pr2—Si2iii74.5 (2)Pr2x—Si2—Pr1ix72.74 (6)
N3vi—Pr2—Si2iii85.88 (18)N2—Si2—Pr2xiii63.03 (5)
Si3—Pr2—Si2iii65.15 (5)N1—Si2—Pr2xiii102.34 (17)
N3i—Pr2—Si1108.77 (18)N3ix—Si2—Pr2xiii55.5 (3)
N4iv—Pr2—Si1104.47 (19)N3x—Si2—Pr2xiii144.5 (3)
N5—Pr2—Si132.8 (2)Pr3ix—Si2—Pr2xiii79.51 (6)
N1iii—Pr2—Si174.5 (2)Pr1—Si2—Pr2xiii76.47 (6)
N5v—Pr2—Si183.71 (16)Pr2ix—Si2—Pr2xiii157.94 (9)
N6—Pr2—Si132.5 (2)Pr2x—Si2—Pr2xiii71.77 (2)
N3vi—Pr2—Si1151.39 (17)Pr1ix—Si2—Pr2xiii108.81 (6)
Si3—Pr2—Si1121.96 (6)N2—Si2—Pr2xvii63.03 (5)
Si2iii—Pr2—Si191.60 (6)N1—Si2—Pr2xvii102.34 (17)
N3i—Pr2—Si2iv85.02 (18)N3ix—Si2—Pr2xvii144.5 (3)
N4iv—Pr2—Si2iv80.27 (19)N3x—Si2—Pr2xvii55.5 (3)
N5—Pr2—Si2iv135.8 (2)Pr3ix—Si2—Pr2xvii79.51 (6)
N1iii—Pr2—Si2iv125.3 (2)Pr1—Si2—Pr2xvii76.47 (6)
N5v—Pr2—Si2iv76.68 (16)Pr2ix—Si2—Pr2xvii71.77 (2)
N6—Pr2—Si2iv146.3 (2)Pr2x—Si2—Pr2xvii157.94 (9)
N3vi—Pr2—Si2iv29.85 (17)Pr1ix—Si2—Pr2xvii108.81 (6)
Si3—Pr2—Si2iv62.78 (6)Pr2xiii—Si2—Pr2xvii125.65 (10)
Si2iii—Pr2—Si2iv107.04 (3)N3vi—Si3—N3i99.8 (6)
Si1—Pr2—Si2iv160.04 (7)N3vi—Si3—N4vi107.8 (4)
N3i—Pr2—Pr4iv160.79 (17)N3i—Si3—N4vi106.7 (4)
N4iv—Pr2—Pr4iv44.35 (17)N3vi—Si3—N4i106.7 (4)
N5—Pr2—Pr4iv42.36 (19)N3i—Si3—N4i107.8 (4)
N1iii—Pr2—Pr4iv99.7 (2)N4vi—Si3—N4i125.2 (5)
N5v—Pr2—Pr4iv77.38 (17)N3vi—Si3—Pr1138.4 (3)
N6—Pr2—Pr4iv107.2 (2)N3i—Si3—Pr159.3 (3)
N3vi—Pr2—Pr4iv126.40 (17)N4vi—Si3—Pr1112.5 (3)
Si3—Pr2—Pr4iv158.49 (2)N4i—Si3—Pr156.5 (3)
Si2iii—Pr2—Pr4iv131.58 (6)N3vi—Si3—Pr1vi59.3 (3)
Si1—Pr2—Pr4iv75.19 (5)N3i—Si3—Pr1vi138.4 (3)
Si2iv—Pr2—Pr4iv96.64 (5)N4vi—Si3—Pr1vi56.5 (3)
N1—Pr3—N5vii148.38 (19)N4i—Si3—Pr1vi112.5 (3)
N1—Pr3—N5viii148.38 (19)Pr1—Si3—Pr1vi158.86 (12)
N5vii—Pr3—N5viii60.6 (3)N3vi—Si3—Pr2xviii56.1 (3)
N1—Pr3—N5ix85.2 (3)N3i—Si3—Pr2xviii62.7 (3)
N5vii—Pr3—N5ix72.6 (3)N4vi—Si3—Pr2xviii79.7 (3)
N5viii—Pr3—N5ix101.2 (2)N4i—Si3—Pr2xviii154.9 (3)
N1—Pr3—N5x85.2 (3)Pr1—Si3—Pr2xviii121.79 (7)
N5vii—Pr3—N5x101.2 (2)Pr1vi—Si3—Pr2xviii76.26 (3)
N5viii—Pr3—N5x72.6 (3)N3vi—Si3—Pr262.7 (3)
N5ix—Pr3—N5x58.6 (3)N3i—Si3—Pr256.1 (3)
N1—Pr3—N4xi74.78 (15)N4vi—Si3—Pr2154.9 (3)
N5vii—Pr3—N4xi136.0 (2)N4i—Si3—Pr279.7 (3)
N5viii—Pr3—N4xi75.5 (2)Pr1—Si3—Pr276.26 (3)
N5ix—Pr3—N4xi120.9 (2)Pr1vi—Si3—Pr2121.79 (7)
N5x—Pr3—N4xi64.7 (2)Pr2xviii—Si3—Pr275.92 (8)
N1—Pr3—N4vi74.78 (15)N3vi—Si3—Pr3134.2 (3)
N5vii—Pr3—N4vi75.5 (2)N3i—Si3—Pr355.4 (3)
N5viii—Pr3—N4vi136.0 (2)N4vi—Si3—Pr356.9 (3)
N5ix—Pr3—N4vi64.7 (2)N4i—Si3—Pr3117.0 (3)
N5x—Pr3—N4vi120.9 (2)Pr1—Si3—Pr366.28 (2)
N4xi—Pr3—N4vi148.3 (3)Pr1vi—Si3—Pr3111.45 (3)
N1—Pr3—Si1viii171.4 (3)Pr2xviii—Si3—Pr378.13 (3)
N5vii—Pr3—Si1viii34.86 (17)Pr2—Si3—Pr3111.28 (6)
N5viii—Pr3—Si1viii34.86 (17)N3vi—Si3—Pr3vi55.4 (3)
N5ix—Pr3—Si1viii102.31 (17)N3i—Si3—Pr3vi134.2 (3)
N5x—Pr3—Si1viii102.31 (17)N4vi—Si3—Pr3vi117.0 (3)
N4xi—Pr3—Si1viii104.38 (15)N4i—Si3—Pr3vi56.9 (3)
N4vi—Pr3—Si1viii104.38 (15)Pr1—Si3—Pr3vi111.45 (3)
N1—Pr3—Si2iii105.8 (3)Pr1vi—Si3—Pr3vi66.28 (2)
N5vii—Pr3—Si2iii84.53 (19)Pr2xviii—Si3—Pr3vi111.28 (6)
N5viii—Pr3—Si2iii84.53 (19)Pr2—Si3—Pr3vi78.13 (3)
N5ix—Pr3—Si2iii149.10 (17)Pr3—Si3—Pr3vi168.55 (11)
N5x—Pr3—Si2iii149.10 (17)Si2—N1—Pr3178.3 (7)
N4xi—Pr3—Si2iii89.97 (15)Si2—N1—Pr187.3 (5)
N4vi—Pr3—Si2iii89.97 (15)Pr3—N1—Pr191.1 (4)
Si1viii—Pr3—Si2iii65.53 (9)Si2—N1—Pr2ix89.8 (3)
N1—Pr3—Si3ii71.58 (17)Pr3—N1—Pr2ix91.1 (3)
N5vii—Pr3—Si3ii137.36 (18)Pr1—N1—Pr2ix124.3 (2)
N5viii—Pr3—Si3ii87.79 (18)Si2—N1—Pr2x89.8 (3)
N5ix—Pr3—Si3ii146.45 (18)Pr3—N1—Pr2x91.1 (3)
N5x—Pr3—Si3ii94.75 (16)Pr1—N1—Pr2x124.3 (2)
N4xi—Pr3—Si3ii30.36 (15)Pr2ix—N1—Pr2x111.2 (4)
N4vi—Pr3—Si3ii127.82 (14)Si2—N2—Si1xv147.4 (8)
Si1viii—Pr3—Si3ii103.21 (6)Si2—N2—Pr194.0 (4)
Si2iii—Pr3—Si3ii63.20 (6)Si1xv—N2—Pr1118.6 (6)
N1—Pr3—Si371.58 (17)Si3ii—N3—Si2iii175.7 (6)
N5vii—Pr3—Si387.79 (18)Si3ii—N3—Pr2i90.7 (4)
N5viii—Pr3—Si3137.36 (18)Si2iii—N3—Pr2i93.4 (3)
N5ix—Pr3—Si394.75 (16)Si3ii—N3—Pr185.9 (3)
N5x—Pr3—Si3146.45 (18)Si2iii—N3—Pr194.7 (3)
N4xi—Pr3—Si3127.82 (14)Pr2i—N3—Pr193.9 (3)
N4vi—Pr3—Si330.36 (15)Si3ii—N3—Pr2ii84.3 (3)
Si1viii—Pr3—Si3103.21 (6)Si2iii—N3—Pr2ii94.7 (3)
Si2iii—Pr3—Si363.20 (6)Pr2i—N3—Pr2ii91.0 (2)
Si3ii—Pr3—Si3100.21 (3)Pr1—N3—Pr2ii169.1 (3)
N1—Pr3—Si1ix74.8 (3)Si3ii—N4—Pr2xiii124.0 (4)
N5vii—Pr3—Si1ix94.91 (19)Si3ii—N4—Pr4143.3 (4)
N5viii—Pr3—Si1ix94.91 (19)Pr2xiii—N4—Pr492.1 (2)
N5ix—Pr3—Si1ix30.70 (16)Si3ii—N4—Pr188.3 (3)
N5x—Pr3—Si1ix30.70 (16)Pr2xiii—N4—Pr1108.9 (3)
N4xi—Pr3—Si1ix90.21 (15)Pr4—N4—Pr185.3 (2)
N4vi—Pr3—Si1ix90.21 (15)Si3ii—N4—Pr3ii92.7 (3)
Si1viii—Pr3—Si1ix113.82 (7)Pr2xiii—N4—Pr3ii84.8 (2)
Si2iii—Pr3—Si1ix179.35 (8)Pr4—N4—Pr3ii83.5 (2)
Si3ii—Pr3—Si1ix117.13 (6)Pr1—N4—Pr3ii162.7 (3)
Si3—Pr3—Si1ix117.13 (6)Si1—N5—Pr4iv169.2 (5)
N5xii—Pr4—N5xiii88.2 (4)Si1—N5—Pr297.4 (4)
N5xii—Pr4—N490.6 (3)Pr4iv—N5—Pr293.2 (3)
N5xiii—Pr4—N478.2 (3)Si1—N5—Pr3xvi81.5 (3)
N5xii—Pr4—N4xiv78.2 (3)Pr4iv—N5—Pr3xvi87.8 (3)
N5xiii—Pr4—N4xiv90.6 (3)Pr2—N5—Pr3xvi163.4 (4)
N4—Pr4—N4xiv164.5 (4)Si1—N5—Pr3iii93.7 (4)
N5xii—Pr4—N6100.3 (3)Pr4iv—N5—Pr3iii85.8 (3)
N5xiii—Pr4—N6161.9 (3)Pr2—N5—Pr3iii84.7 (2)
N4—Pr4—N685.6 (3)Pr3xvi—N5—Pr3iii78.8 (2)
N4xiv—Pr4—N6106.7 (3)Si1—N5—Pr2v95.3 (4)
N5xii—Pr4—N6xv161.9 (3)Pr4iv—N5—Pr2v83.8 (3)
N5xiii—Pr4—N6xv100.3 (3)Pr2—N5—Pr2v102.0 (3)
N4—Pr4—N6xv106.7 (3)Pr3xvi—N5—Pr2v94.6 (2)
N4xiv—Pr4—N6xv85.6 (3)Pr3iii—N5—Pr2v167.9 (3)
N6—Pr4—N6xv76.3 (4)Si1—N6—Pr1168.4 (7)
N5xii—Pr4—Pr1119.2 (2)Si1—N6—Pr4106.5 (4)
N5xiii—Pr4—Pr1115.63 (19)Pr1—N6—Pr480.3 (3)
N4—Pr4—Pr147.91 (18)Si1—N6—Pr4xv106.5 (4)
N4xiv—Pr4—Pr1147.47 (18)Pr1—N6—Pr4xv80.3 (3)
N6—Pr4—Pr146.3 (2)Pr4—N6—Pr4xv103.7 (4)
N6xv—Pr4—Pr171.6 (2)Si1—N6—Pr283.1 (3)
N5xii—Pr4—Pr1xv115.63 (19)Pr1—N6—Pr289.4 (3)
N5xiii—Pr4—Pr1xv119.2 (2)Pr4—N6—Pr2169.3 (5)
N4—Pr4—Pr1xv147.47 (18)Pr4xv—N6—Pr277.32 (4)
N4xiv—Pr4—Pr1xv47.91 (18)Si1—N6—Pr2i83.1 (3)
N6—Pr4—Pr1xv71.6 (2)Pr1—N6—Pr2i89.4 (3)
N6xv—Pr4—Pr1xv46.3 (2)Pr4—N6—Pr2i77.32 (4)
Pr1—Pr4—Pr1xv100.33 (3)Pr4xv—N6—Pr2i169.3 (5)
N5xii—Pr4—Pr2xiii111.17 (19)Pr2—N6—Pr2i99.7 (3)
N5xiii—Pr4—Pr2xiii44.41 (19)

Symmetry codes: (i) −x, y, z; (ii) x+1/2, y, −z+1/2; (iii) x, y−1/2, −z+1/2; (iv) x−1/2, y−1/2, z; (v) −x−1/2, −y−1/2, −z+1; (vi) x−1/2, y, −z+1/2; (vii) x, −y−1/2, z−1/2; (viii) −x, −y−1/2, z−1/2; (ix) x, y+1/2, −z+1/2; (x) −x, y+1/2, −z+1/2; (xi) −x+1/2, y, −z+1/2; (xii) x+1/2, −y−1/2, −z+1; (xiii) x+1/2, y+1/2, z; (xiv) x, −y, −z+1; (xv) −x, −y, −z+1; (xvi) −x, −y−1/2, z+1/2; (xvii) −x−1/2, y+1/2, z; (xviii) −x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2229).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Lissner, F. & Schleid, T. (2004). Z. Anorg. Allg. Chem.630, 2226–2230.
  • Schmolke, C., Bichler, D., Johrendt, D. & Schnick, W. (2009). Solid State Sci.11, 389–394.
  • Schnick, W. (2001). Int. J. Inorg. Mater.3, 1267–1272.
  • Schnick, W. & Huppertz, H. (1997). Chem. Eur. J.3, 679–683.
  • Schnick, W., Huppertz, H. & Lauterbach, R. (1999). J. Mater. Chem.9, 289–296.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography