PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1316.
Published online 2009 May 20. doi:  10.1107/S1600536809017528
PMCID: PMC2969804

1,3-Bis{(+)-(S)-[1-(1-naphth­yl)eth­yl]imino­meth­yl}benzene dichloro­methane solvate

Abstract

In the title compound, C32H28N2·CH2Cl2, the complete Schiff base and solvent molecules are both generated by crystallographic twofold axes, with the two C atoms of the former and the C atom of the latter lying on the rotation axis. The central benzene ring is substituted with two chiral groups including imine functionalities, with the common E configuration. The dihedral angle between the central benzene ring and the terminal naphthalene ring is 45.42 (9)° and that between the two naphthalene rings is 89.16 (8)°. The conformation of the Schiff base allows solvent mol­ecules to fill the voids in the crystal, affording a stable 1:1 solvate, but the solvent inter­acts poorly with the Schiff base, as reflected by its rather high displacement parameters.

Related literature

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005 [triangle]); Noyori (2005 [triangle]); Tanaka & Toda (2000 [triangle]). For related chiral Schiff bases synthesized using similar routes, see: Tovar et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1316-scheme1.jpg

Experimental

Crystal data

  • C32H28N2·CH2Cl2
  • M r = 525.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1316-efi1.jpg
  • a = 8.550 (2) Å
  • b = 20.706 (6) Å
  • c = 7.972 (3) Å
  • V = 1411.3 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 298 K
  • 0.40 × 0.24 × 0.20 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: gaussian (XSCANS; Siemens, 1996 [triangle]) T min = 0.933, T max = 0.954
  • 6308 measured reflections
  • 2497 independent reflections
  • 1428 reflections with I > 2σ(I)
  • R int = 0.060
  • 3 standard reflections every 97 reflections intensity decay: 2.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.186
  • S = 1.06
  • 2497 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1028 Friedel pairs
  • Flack parameter: 0.0 (2)

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017528/fj2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017528/fj2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

supplementary crystallographic information

Comment

During the last few decades, a central objective in synthetic organic chemistry has been to develop greener and more economically competitive processes for the efficient synthesis of compounds with potential applications in diverse fields. In this context, the solvent-free approach is simple with amazing versatility because it reduces the use of organic solvents and minimizes the formation of other waste. Likewise, the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Moreover, it may allow access to compounds that require harsh reaction conditions under traditional approaches or when the yields are too low to be of practical convenience (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000).

On the other hand, bisimines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes.

Continuing our work on the synthesis of chiral imines (Tovar et al., 2007), we synthesized the title Schiff base under solvent-free conditions and report here its X-ray structure. The asymmetric unit contains one half-molecule and one half dichloromethane molecule, both placed on binary axis (Fig. 1). This arrangement is probably favored by the presence of a chiral center, C6, allowing to orient the substituents of the imine functionality towards the opposite faces of the central benzene core. The crystal is further stabilized by the inclusion of lattice solvent, resulting in a 1:1 solvate. Indeed, the shape of the Schiff base is suitable for the formation of a guest-host complex (Fig. 2). However, as no efficient hydrogen bonds are formed, the solvent molecule presents high displacement parameters, compared to the host (See Fig. 1).

Experimental

Under solvent-free conditions, a mixture of benzene-1,3-dicarboxaldehyde (0.12 g, 0.9 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized from CH2Cl2, affording colorless crystals of the title solvate (Yield: 98%; m.p. 343–345 K. [α]25D=+253.7 (c=1, CHCl3). IR and NMR data are consistent with the X-ray structure (see archived CIF).

Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) and 0.98 Å (methine CH). isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise.

Figures

Fig. 1.
Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms. Non-labeled atoms are generated through the symmetry operation 2 - x, 1 - y, z.
Fig. 2.
A part of the crystal structure of the title compound along [100], showing the lattice solvent molecules with a space-filling representation.

Crystal data

C32H28N2·CH2Cl2Dx = 1.237 Mg m3
Mr = 525.49Melting point: 343 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 51 reflections
a = 8.550 (2) Åθ = 4.0–11.9°
b = 20.706 (6) ŵ = 0.25 mm1
c = 7.972 (3) ÅT = 298 K
V = 1411.3 (7) Å3Prism, yellow
Z = 20.40 × 0.24 × 0.20 mm
F(000) = 552

Data collection

Siemens P4 diffractometer1428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
graphiteθmax = 25.0°, θmin = 2.0°
2θ/ω scansh = −10→10
Absorption correction: gaussian (XSCANS; Siemens, 1996)k = −24→24
Tmin = 0.933, Tmax = 0.954l = −9→9
6308 measured reflections3 standard reflections every 97 reflections
2497 independent reflections intensity decay: 2.3%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2257P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.19 e Å3
2497 reflectionsΔρmin = −0.16 e Å3
172 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.036 (6)
0 constraintsAbsolute structure: Flack (1983), 1028 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.0 (2)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8943 (5)0.38124 (15)1.0214 (4)0.0789 (10)
C11.00000.50001.5231 (7)0.0904 (19)
H1A1.00000.50001.63980.108*
C20.9506 (5)0.4463 (2)1.4376 (5)0.0800 (12)
H2A0.91660.41021.49680.096*
C30.9508 (4)0.44531 (18)1.2633 (5)0.0660 (10)
C41.00000.50001.1777 (7)0.0682 (14)
H4A1.00000.50001.06110.082*
C50.9004 (5)0.38667 (18)1.1771 (5)0.0711 (10)
H5A0.87110.35141.24200.085*
C60.8370 (5)0.32020 (18)0.9537 (5)0.0747 (11)
H6A0.82220.28971.04640.090*
C70.6791 (5)0.3332 (2)0.8717 (6)0.0947 (14)
H7A0.60770.34990.95390.142*
H7B0.63830.29370.82620.142*
H7C0.69180.36420.78320.142*
C80.9507 (5)0.29178 (16)0.8309 (5)0.0646 (9)
C91.0643 (5)0.32880 (18)0.7563 (5)0.0760 (11)
H9A1.07400.37200.78680.091*
C101.1656 (6)0.3034 (2)0.6361 (6)0.0924 (14)
H10A1.24300.32950.58990.111*
C111.1527 (6)0.2419 (2)0.5865 (5)0.0851 (12)
H11A1.21840.22630.50280.102*
C121.0413 (5)0.20049 (19)0.6592 (5)0.0751 (11)
C131.0297 (6)0.1351 (2)0.6116 (6)0.0911 (13)
H13A1.09600.11880.52930.109*
C140.9225 (6)0.0957 (2)0.6848 (7)0.0973 (15)
H14A0.91580.05270.65240.117*
C150.8233 (5)0.1194 (2)0.8073 (7)0.0909 (14)
H15A0.75140.09190.85780.109*
C160.8295 (5)0.18255 (17)0.8549 (6)0.0749 (11)
H16A0.76150.19750.93710.090*
C170.9380 (4)0.22579 (17)0.7812 (5)0.0652 (9)
C180.50000.50000.8916 (9)0.123 (3)
H18A0.46410.53490.96290.148*
Cl10.6505 (3)0.52641 (11)0.7706 (3)0.1852 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.102 (3)0.0685 (19)0.067 (2)−0.0018 (18)0.003 (2)0.0003 (16)
C10.099 (5)0.115 (5)0.057 (3)0.000 (4)0.0000.000
C20.084 (3)0.090 (3)0.066 (2)0.004 (3)0.008 (2)0.008 (2)
C30.062 (2)0.076 (2)0.060 (2)0.0110 (19)0.0047 (19)0.0017 (19)
C40.073 (3)0.075 (3)0.056 (3)0.015 (3)0.0000.000
C50.073 (2)0.070 (2)0.070 (3)0.008 (2)0.007 (2)0.008 (2)
C60.085 (3)0.070 (2)0.069 (2)−0.001 (2)0.003 (2)0.0066 (19)
C70.080 (3)0.099 (3)0.105 (3)0.016 (3)0.008 (3)0.000 (3)
C80.069 (2)0.064 (2)0.060 (2)0.0002 (18)0.003 (2)0.0087 (17)
C90.085 (3)0.072 (2)0.071 (2)−0.006 (2)0.005 (2)0.009 (2)
C100.091 (3)0.100 (3)0.086 (3)−0.005 (3)0.026 (3)0.022 (3)
C110.082 (3)0.102 (3)0.072 (3)0.013 (3)0.011 (2)0.003 (2)
C120.071 (2)0.081 (2)0.073 (2)0.010 (2)−0.014 (2)−0.004 (2)
C130.089 (3)0.090 (3)0.095 (3)0.020 (3)−0.019 (3)−0.019 (3)
C140.097 (3)0.076 (3)0.120 (4)0.012 (3)−0.030 (4)−0.010 (3)
C150.078 (3)0.075 (3)0.120 (4)−0.005 (2)−0.024 (3)0.007 (3)
C160.066 (2)0.072 (2)0.087 (3)−0.004 (2)−0.004 (2)0.002 (2)
C170.059 (2)0.069 (2)0.068 (2)0.0022 (18)−0.007 (2)0.0072 (18)
C180.192 (10)0.094 (5)0.084 (4)−0.003 (5)0.0000.000
Cl10.1454 (16)0.208 (2)0.202 (2)−0.0442 (14)0.0100 (17)0.0547 (16)

Geometric parameters (Å, °)

N1—C51.248 (5)C9—C101.395 (6)
N1—C61.459 (5)C9—H9A0.9300
C1—C21.371 (5)C10—C111.338 (6)
C1—C2i1.371 (5)C10—H10A0.9300
C1—H1A0.9300C11—C121.407 (6)
C2—C31.390 (5)C11—H11A0.9300
C2—H2A0.9300C12—C131.410 (6)
C3—C41.387 (4)C12—C171.414 (5)
C3—C51.460 (5)C13—C141.359 (7)
C4—C3i1.387 (4)C13—H13A0.9300
C4—H4A0.9300C14—C151.384 (7)
C5—H5A0.9300C14—H14A0.9300
C6—C81.500 (5)C15—C161.363 (5)
C6—C71.524 (6)C15—H15A0.9300
C6—H6A0.9800C16—C171.416 (5)
C7—H7A0.9600C16—H16A0.9300
C7—H7B0.9600C18—Cl1ii1.699 (5)
C7—H7C0.9600C18—Cl11.699 (5)
C8—C91.373 (5)C18—H18A0.9698
C8—C171.427 (5)
C5—N1—C6117.4 (3)C8—C9—C10121.8 (4)
C2—C1—C2i120.4 (6)C8—C9—H9A119.1
C2—C1—H1A119.8C10—C9—H9A119.1
C2i—C1—H1A119.8C11—C10—C9120.7 (4)
C1—C2—C3120.6 (4)C11—C10—H10A119.7
C1—C2—H2A119.7C9—C10—H10A119.7
C3—C2—H2A119.7C10—C11—C12121.0 (4)
C4—C3—C2118.7 (4)C10—C11—H11A119.5
C4—C3—C5122.5 (4)C12—C11—H11A119.5
C2—C3—C5118.8 (4)C11—C12—C13121.5 (4)
C3—C4—C3i121.1 (5)C11—C12—C17118.7 (4)
C3—C4—H4A119.4C13—C12—C17119.8 (4)
C3i—C4—H4A119.4C14—C13—C12120.5 (5)
N1—C5—C3123.7 (4)C14—C13—H13A119.7
N1—C5—H5A118.1C12—C13—H13A119.7
C3—C5—H5A118.1C13—C14—C15120.3 (4)
N1—C6—C8111.3 (3)C13—C14—H14A119.9
N1—C6—C7107.6 (3)C15—C14—H14A119.9
C8—C6—C7111.3 (3)C16—C15—C14120.8 (5)
N1—C6—H6A108.8C16—C15—H15A119.6
C8—C6—H6A108.8C14—C15—H15A119.6
C7—C6—H6A108.8C15—C16—C17121.1 (4)
C6—C7—H7A109.5C15—C16—H16A119.4
C6—C7—H7B109.5C17—C16—H16A119.4
H7A—C7—H7B109.5C12—C17—C16117.4 (4)
C6—C7—H7C109.5C12—C17—C8119.9 (3)
H7A—C7—H7C109.5C16—C17—C8122.7 (4)
H7B—C7—H7C109.5Cl1ii—C18—Cl1110.8 (4)
C9—C8—C17117.9 (4)Cl1ii—C18—H18A109.4
C9—C8—C6121.5 (3)Cl1—C18—H18A109.4
C17—C8—C6120.5 (3)
C2i—C1—C2—C30.4 (3)C10—C11—C12—C13−178.1 (4)
C1—C2—C3—C4−0.9 (6)C10—C11—C12—C172.7 (6)
C1—C2—C3—C5178.7 (3)C11—C12—C13—C14179.2 (4)
C2—C3—C4—C3i0.4 (3)C17—C12—C13—C14−1.6 (6)
C5—C3—C4—C3i−179.1 (4)C12—C13—C14—C150.0 (7)
C6—N1—C5—C3−178.2 (4)C13—C14—C15—C161.0 (7)
C4—C3—C5—N1−1.5 (6)C14—C15—C16—C17−0.3 (6)
C2—C3—C5—N1179.0 (4)C11—C12—C17—C16−178.6 (4)
C5—N1—C6—C8−126.4 (4)C13—C12—C17—C162.2 (5)
C5—N1—C6—C7111.4 (4)C11—C12—C17—C8−1.5 (5)
N1—C6—C8—C9−19.0 (5)C13—C12—C17—C8179.3 (4)
C7—C6—C8—C9101.1 (4)C15—C16—C17—C12−1.3 (6)
N1—C6—C8—C17164.5 (3)C15—C16—C17—C8−178.3 (4)
C7—C6—C8—C17−75.4 (4)C9—C8—C17—C120.3 (5)
C17—C8—C9—C10−0.3 (6)C6—C8—C17—C12177.0 (3)
C6—C8—C9—C10−176.9 (4)C9—C8—C17—C16177.2 (3)
C8—C9—C10—C111.5 (7)C6—C8—C17—C16−6.1 (5)
C9—C10—C11—C12−2.7 (7)

Symmetry codes: (i) −x+2, −y+1, z; (ii) −x+1, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2198).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc 127, 16416–16425. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Noyori, R. (2005). Chem. Commun pp. 1807–1811. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tanaka, K. & Toda, F. (2000). Chem. Rev 100, 1025–1074. [PubMed]
  • Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography