PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1314.
Published online 2009 May 20. doi:  10.1107/S1600536809018042
PMCID: PMC2969794

N-(3,4-Diethoxy­phen­yl)acetamide

Abstract

In the title compound, C12H17NO3, the conformations of the N—H and C=O bonds are anti to each other. In the crystal structure, N—H(...)O hydrogen-bond inter­actions help to establish the packing.

Related literature

For the use of acetamides in the synthesis of biologically active compounds, see: Koike et al. (1999 [triangle]). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008 [triangle]). Various N-substituted benzamides exhibit potent anti­emetic activity, see: Vega-Noverola et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1314-scheme1.jpg

Experimental

Crystal data

  • C12H17NO3
  • M r = 223.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1314-efi1.jpg
  • a = 15.563 (8) Å
  • b = 8.661 (6) Å
  • c = 9.305 (7) Å
  • β = 101.773 (14)°
  • V = 1227.8 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.24 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.971, T max = 0.975
  • 6295 measured reflections
  • 2155 independent reflections
  • 1570 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.119
  • S = 1.08
  • 2155 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018042/at2786sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018042/at2786Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province andthe Governor Foundation of Guizhou Province for financial support.

supplementary crystallographic information

Comment

Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure determination of the title compound (I) has been carried out in order to elucidate the molecular conformation.

The molecule of the title compound, (Fig. 1), consists of a phenylacetamide group and two ethoxyl groups. The conformations of the N—H and C=O bonds are anti to each other. The C10—C9—O2—C4 and C8—C7—O1—C3 torsion angles are -173.61 (15)° and 178.46 (15)°, respectively. The title compound forms intermolecular H bonds whereas the N1 act as hydrogen-bond donor and the O3 act as hydrogen-bond acceptor, the distance of the N1—H1···O3 hydrogen bond is 2.915 (2) Å (Table 1). In the crystal structure, N—H···O hydrogen bonds interactions may help to establish the packing.

Experimental

Ferrous powder (2.20 g, 0.039 mol), water (15 ml) and acetic acid (3 ml) were reflux for 4 h, the reaction mixture was cooled to room temperature. Then a solution of 1,2-diethoxy-4-nitrobenzene (2.10 g, 0.01 mol) in acetic acid (50 ml) was added to the mixture, the solution was reflux for 6 h. the mixture was filtered, and the resulting solution was added to water (150 ml), much white precipitate was appeared, the mixture was filtered again, the solid product was dissolved in 80 ml ethanol. and then set aside for five days to obtain colourless crystals [yield: 53%].

Refinement

All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H17NO3F(000) = 480
Mr = 223.27Dx = 1.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2155 reflections
a = 15.563 (8) Åθ = 1.3–25.0°
b = 8.661 (6) ŵ = 0.09 mm1
c = 9.305 (7) ÅT = 293 K
β = 101.773 (14)°Block, colourless
V = 1227.8 (14) Å30.24 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2155 independent reflections
Radiation source: fine-focus sealed tube1570 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −18→16
Tmin = 0.971, Tmax = 0.975k = −10→10
6295 measured reflectionsl = −10→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
2155 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.36147 (10)0.08455 (17)0.48242 (16)0.0426 (4)
C20.32424 (10)0.07894 (18)0.60656 (15)0.0451 (4)
H20.35190.12890.69200.054*
C30.24680 (10)0.00019 (18)0.60451 (16)0.0445 (4)
C40.20432 (11)−0.07482 (19)0.47506 (17)0.0479 (4)
C50.24235 (11)−0.0712 (2)0.35439 (18)0.0542 (5)
H50.2153−0.12230.26930.065*
C60.32090 (11)0.00790 (19)0.35673 (17)0.0513 (4)
H60.34580.00890.27390.062*
C70.24108 (11)0.0806 (2)0.84850 (17)0.0554 (5)
H7A0.24030.18910.82250.067*
H7B0.30130.05080.88870.067*
C80.18566 (14)0.0537 (3)0.9582 (2)0.0759 (6)
H8A0.20810.11281.04510.114*
H8B0.1866−0.05410.98270.114*
H8C0.12650.08500.91790.114*
C90.06962 (12)−0.1888 (2)0.3449 (2)0.0656 (5)
H9A0.0967−0.26730.29440.079*
H9B0.0573−0.09910.28170.079*
C10−0.01353 (12)−0.2493 (3)0.3827 (3)0.0869 (7)
H10A−0.0539−0.27760.29420.130*
H10B−0.0394−0.17070.43300.130*
H10C−0.0004−0.33820.44490.130*
C110.48850 (10)0.20423 (18)0.39666 (17)0.0446 (4)
C120.56454 (11)0.3114 (2)0.44698 (19)0.0569 (5)
H12A0.56710.33930.54760.085*
H12B0.55700.40260.38720.085*
H12C0.61810.26060.43830.085*
N10.43955 (8)0.17335 (14)0.49706 (14)0.0459 (4)
H10.45830.21310.58240.055*
O10.20629 (7)−0.01068 (13)0.72098 (11)0.0559 (4)
O20.12688 (7)−0.14790 (14)0.48136 (13)0.0626 (4)
O30.47167 (8)0.15207 (13)0.27060 (12)0.0587 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0448 (9)0.0439 (9)0.0407 (8)0.0034 (7)0.0126 (7)0.0045 (7)
C20.0490 (10)0.0488 (9)0.0385 (9)−0.0023 (7)0.0114 (7)−0.0007 (7)
C30.0481 (10)0.0458 (9)0.0427 (9)−0.0007 (7)0.0162 (7)0.0006 (7)
C40.0476 (10)0.0486 (10)0.0475 (9)−0.0042 (8)0.0103 (7)−0.0004 (7)
C50.0615 (11)0.0593 (11)0.0419 (9)−0.0073 (9)0.0105 (8)−0.0074 (8)
C60.0602 (11)0.0569 (10)0.0398 (9)−0.0008 (8)0.0174 (8)−0.0008 (8)
C70.0614 (11)0.0640 (11)0.0437 (9)−0.0105 (9)0.0172 (8)−0.0088 (8)
C80.0879 (15)0.0933 (15)0.0524 (11)−0.0225 (12)0.0279 (10)−0.0150 (10)
C90.0592 (12)0.0656 (12)0.0658 (12)−0.0083 (9)−0.0018 (9)−0.0002 (9)
C100.0583 (13)0.0939 (17)0.1049 (17)−0.0174 (12)0.0083 (12)−0.0065 (13)
C110.0517 (10)0.0432 (9)0.0422 (9)0.0096 (7)0.0169 (7)0.0094 (7)
C120.0590 (11)0.0557 (10)0.0611 (11)−0.0030 (8)0.0239 (9)0.0089 (8)
N10.0501 (8)0.0527 (8)0.0375 (7)−0.0036 (6)0.0151 (6)0.0004 (6)
O10.0606 (8)0.0681 (8)0.0443 (6)−0.0172 (6)0.0226 (6)−0.0093 (6)
O20.0585 (8)0.0752 (9)0.0550 (7)−0.0218 (6)0.0133 (6)−0.0094 (6)
O30.0723 (8)0.0664 (8)0.0423 (7)0.0002 (6)0.0231 (6)0.0029 (5)

Geometric parameters (Å, °)

C1—C61.380 (2)C8—H8B0.9600
C1—C21.395 (2)C8—H8C0.9600
C1—N11.421 (2)C9—O21.439 (2)
C2—C31.382 (2)C9—C101.503 (3)
C2—H20.9300C9—H9A0.9700
C3—O11.3636 (19)C9—H9B0.9700
C3—C41.409 (2)C10—H10A0.9600
C4—C51.372 (2)C10—H10B0.9600
C4—O21.3732 (19)C10—H10C0.9600
C5—C61.398 (2)C11—O31.2342 (19)
C5—H50.9300C11—N11.3471 (19)
C6—H60.9300C11—C121.502 (2)
C7—O11.437 (2)C12—H12A0.9600
C7—C81.483 (2)C12—H12B0.9600
C7—H7A0.9700C12—H12C0.9600
C7—H7B0.9700N1—H10.8600
C8—H8A0.9600
C6—C1—C2119.30 (15)H8A—C8—H8C109.5
C6—C1—N1125.16 (14)H8B—C8—H8C109.5
C2—C1—N1115.54 (13)O2—C9—C10106.70 (16)
C3—C2—C1120.95 (14)O2—C9—H9A110.4
C3—C2—H2119.5C10—C9—H9A110.4
C1—C2—H2119.5O2—C9—H9B110.4
O1—C3—C2124.51 (14)C10—C9—H9B110.4
O1—C3—C4115.80 (14)H9A—C9—H9B108.6
C2—C3—C4119.69 (14)C9—C10—H10A109.5
C5—C4—O2125.06 (15)C9—C10—H10B109.5
C5—C4—C3118.91 (15)H10A—C10—H10B109.5
O2—C4—C3116.03 (14)C9—C10—H10C109.5
C4—C5—C6121.37 (15)H10A—C10—H10C109.5
C4—C5—H5119.3H10B—C10—H10C109.5
C6—C5—H5119.3O3—C11—N1123.10 (16)
C1—C6—C5119.75 (15)O3—C11—C12121.56 (15)
C1—C6—H6120.1N1—C11—C12115.32 (14)
C5—C6—H6120.1C11—C12—H12A109.5
O1—C7—C8107.94 (14)C11—C12—H12B109.5
O1—C7—H7A110.1H12A—C12—H12B109.5
C8—C7—H7A110.1C11—C12—H12C109.5
O1—C7—H7B110.1H12A—C12—H12C109.5
C8—C7—H7B110.1H12B—C12—H12C109.5
H7A—C7—H7B108.4C11—N1—C1129.38 (14)
C7—C8—H8A109.5C11—N1—H1115.3
C7—C8—H8B109.5C1—N1—H1115.3
H8A—C8—H8B109.5C3—O1—C7117.45 (13)
C7—C8—H8C109.5C4—O2—C9117.83 (13)
C6—C1—C2—C3−1.1 (2)C4—C5—C6—C1−0.2 (3)
N1—C1—C2—C3178.02 (13)O3—C11—N1—C1−2.1 (2)
C1—C2—C3—O1−179.99 (14)C12—C11—N1—C1176.25 (14)
C1—C2—C3—C4−0.4 (2)C6—C1—N1—C111.4 (2)
O1—C3—C4—C5−178.74 (14)C2—C1—N1—C11−177.71 (14)
C2—C3—C4—C51.7 (2)C2—C3—O1—C77.5 (2)
O1—C3—C4—O20.8 (2)C4—C3—O1—C7−172.04 (14)
C2—C3—C4—O2−178.79 (14)C8—C7—O1—C3178.46 (15)
O2—C4—C5—C6179.12 (15)C5—C4—O2—C9−17.2 (2)
C3—C4—C5—C6−1.4 (3)C3—C4—O2—C9163.33 (15)
C2—C1—C6—C51.4 (2)C10—C9—O2—C4−173.61 (15)
N1—C1—C6—C5−177.64 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.082.915 (2)164

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2786).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett.1, 197–198.
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography