PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m691–m692.
Published online 2009 May 29. doi:  10.1107/S1600536809019400
PMCID: PMC2969789

Bis(acetato-κ2 O,O′)bis­(3,5-dimethyl-1H-pyrazole-κN 2)copper(II)

Abstract

In the title compound, [Cu(C2H3O2)2(C5H8N2)2], the CuII atom has a distorted tetra­gonal–bipyramidal geometry, with the equatorial plane formed by two N atoms belonging to two 3,5-dimethyl-1H-pyrazole ligands and two O atoms from two acetate anions. The second O atoms of the acetate groups provide elongated Cu—O axial contacts, so that the acetates appear to be coordinated in a pseudo-chelate fashion. The pyrazole ligands are situated in cis positions with respect to each other. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming a one-dimensional chain.

Related literature

For properties and applications of 1H-pyrazole and its 3,5-substituted derivatives, see: Fritsky et al. (1993 [triangle], 1994a [triangle],b [triangle]); Halcrow (2001 [triangle]); Jain et al. (2004 [triangle]); Krämer (1999 [triangle]); Krämer et al. (2002 [triangle]); Raptis et al. (1999 [triangle]); Seredyuk et al. (2007 [triangle]); Skopenko et al. (1990 [triangle]). For related compounds, see: Barooah et al. (2006 [triangle]); Deka et al. (2006 [triangle]); Karmakar et al. (2007 [triangle]); Porai-Koshits (1980 [triangle]); Pradeep et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m691-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)2(C5H8N2)2]
  • M r = 373.90
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m691-efi1.jpg
  • a = 9.2861 (11) Å
  • b = 10.1684 (12) Å
  • c = 10.3139 (13) Å
  • α = 110.755 (9)°
  • β = 100.901 (10)°
  • γ = 99.383 (9)°
  • V = 865.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 133 K
  • 0.50 × 0.08 × 0.07 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: numerical (X-RED; Stoe & Cie, 2002 [triangle]) T min = 0.790, T max = 0.935
  • 7882 measured reflections
  • 3713 independent reflections
  • 3129 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.071
  • S = 1.02
  • 3713 reflections
  • 222 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019400/hy2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019400/hy2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42-2008).

supplementary crystallographic information

Comment

1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry because of their marked tendency to form high nuclearity species exhibiting specific magnetic properties (Krämer et al., 2002; Seredyuk et al., 2007). Copper complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites in copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis et al., 1999). In addition, copper carboxylates are important in biology and also in basic inorganic chemistry (Halcrow, 2001; Jain et al., 2004). The carboxylates show a large variety of coordination modes, which can lead to the formation of different assemblies, including supramolecular coordination polymers or metal–organic frameworks (Fritsky et al., 1993, 1994a,b; Skopenko et al., 1990). A large number of copper(II) carboxylates with flexible connection are reported (Barooah et al., 2006; Pradeep et al., 2006). Total use of 1H-pyrazole derivatives and carboxylates can lead to the formation of mononuclear complexes with vacant donor atoms, which can be use as building blocks for the preparation of polynuclear complexes or coordination polymers.

The title compound is a mononuclear complex (Fig. 1), which consists of a CuII ion as the central atom possessing a Jahn–Teller distorted tetragonal–bipyramidal environment. The four equatorial positions are occupied by two N atoms belonging to two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules [Cu—N = 1.9851 (18) and 1.9925 (16) Å] and two O atoms from the acetate anions [Cu—O = 1.9909 (15) and 2.0045 (14) Å]. The other two O atoms of the acetate anions occupy the axial positions [Cu—O = 2.4603 (16) and 2.4774 (18) Å] (Table 1). Each sort of ligands (3,5-dimethyl-1H-pyrazole and carboxylate) in the coordination sphere of central CuII is cis-oriented with respect to each other. According to the carboxylate coordination criteria (Poray-Coshits, 1980), the acetate anions of the title compound coordinate in a pseudo-chelate mode, forming a four-membered chelate ring. The specific chelation of the above mentioned acetate anions, when one of the two bonds always resides in the equatorial position and second bond occupies the axial position of tetragonal–bipyramidal environment, was found in many CuII compounds (Deka et al., 2006; Karmakar et al., 2007). The Cu—O equatorial distances varying in the range of 1.970 and 1.974 Å are somewhat shorter than those in the title compound. The axial Cu—O bond lengths in the title compound are less than 2.685 Å (Karmakar et al., 2007), but longer than 2.281 Å reported by Deka et al. (2006). In addition, asymmetric chelation of the acetate anions shows up in inequivalence of the two C—O bonds. Thus, C—O distances adjacent to the elongated axial Cu—O bonds [C13—O4 = 1.250 (3) and C11—O2 = 1.256 (2) Å] are a bit shorter than those in the equatorial plane [C13—O3 = 1.262 (3) and C11—O1 = 1.266 (3) Å]. The values of the angles around the central atom deviate from ideal tetragonal–bipyramidal geometry.

In the crystal packing (Fig. 2), the complex molecules are connected through intermolecular N—H···O hydrogen bonds into a one-dimensional linear chain. The hydrogen bonds in the structure are of two types, with distances N2···O4 = 2.726 (3) and N4···O2 = 2.732 (2)Å (Table 2). Each couple of hydrogen bonds of one type takes part in forming the different ten-membered cycles. Due to this crystal packing, the shortest intra-chain Cu···Cu separations are 6.018 and 6.123 Å.

Experimental

The title complex was synthesized by a direct method at free access of air oxygen. The mixture of 3,5-dimethyl-1H-pyrazole (0.96 g, 0.01 mol), ammonium acetate (0.77 g, 0.01 mol) in dimethylsulfoxide solution (15 ml) was stirred with copper powder (0.64 g, 0.01 mol) at ambient temperature until dissolved. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation yielded green crystals of the title complex suitable for X-ray analysis in 5 d.

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 0.08 Å2. H atoms bound to N atoms were located on a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed grey lines represent the elongated axial Cu—O bonds.
Fig. 2.
A crystal packing diagram of the title compound, showing the intermolecular hydrogen bonds as underlined dotted and shaded grey lines, which link the molecules into a one-dimensional chain. The dashed black lines represent the axial Cu—O bonds. ...

Crystal data

[Cu(C2H3O2)2(C5H8N2)2]Z = 2
Mr = 373.90F(000) = 390
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2861 (11) ÅCell parameters from 7882 reflections
b = 10.1684 (12) Åθ = 2.2–27.1°
c = 10.3139 (13) ŵ = 1.29 mm1
α = 110.755 (9)°T = 133 K
β = 100.901 (10)°Needle, blue
γ = 99.383 (9)°0.50 × 0.08 × 0.07 mm
V = 865.7 (2) Å3

Data collection

Stoe IPDSII diffractometer3713 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: numerical (X-RED; Stoe & Cie, 2002)h = −11→11
Tmin = 0.790, Tmax = 0.935k = −12→12
7882 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.66 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.59542 (3)0.26364 (3)0.28774 (3)0.01892 (8)
N10.46111 (18)0.31000 (19)0.1448 (2)0.0219 (4)
N20.35711 (19)0.2059 (2)0.0274 (2)0.0236 (4)
N30.41420 (18)0.17191 (19)0.3311 (2)0.0206 (4)
N40.30556 (18)0.2416 (2)0.3681 (2)0.0208 (4)
O10.73397 (15)0.25272 (16)0.45427 (17)0.0241 (3)
O20.69120 (17)0.47040 (17)0.52556 (18)0.0290 (3)
O30.77354 (16)0.32001 (17)0.21787 (18)0.0274 (3)
O40.67255 (17)0.08587 (17)0.09809 (18)0.0313 (4)
C10.4435 (2)0.4379 (2)0.1444 (2)0.0236 (4)
C20.3264 (2)0.4129 (3)0.0235 (3)0.0281 (5)
H2A0.29060.4827−0.00250.080*
C30.2751 (2)0.2644 (3)−0.0486 (2)0.0264 (5)
C40.5404 (3)0.5761 (2)0.2603 (3)0.0295 (5)
H4A0.49750.60130.34090.080*
H4B0.54600.65190.22510.080*
H4C0.64020.56450.29000.080*
C50.1575 (3)0.1717 (3)−0.1863 (3)0.0361 (6)
H5A0.20580.1261−0.25870.080*
H5B0.10020.2310−0.21700.080*
H5C0.09090.0986−0.17190.080*
C60.3738 (2)0.0426 (2)0.3370 (2)0.0223 (4)
C70.2394 (2)0.0308 (2)0.3797 (3)0.0260 (5)
H70.1875−0.04810.39240.080*
C80.1996 (2)0.1597 (2)0.3991 (2)0.0226 (4)
C90.4646 (3)−0.0668 (3)0.2981 (3)0.0331 (5)
H9A0.4376−0.11800.19540.080*
H9B0.4442−0.13450.34170.080*
H9C0.5705−0.01830.33200.080*
C100.0700 (2)0.2149 (3)0.4456 (3)0.0317 (5)
H10A0.10820.30800.52460.080*
H10B0.01380.14790.47530.080*
H10C0.00490.22400.36680.080*
C110.7570 (2)0.3795 (2)0.5494 (2)0.0232 (4)
C120.8678 (3)0.4198 (3)0.6921 (3)0.0344 (5)
H12A0.96370.47420.69440.080*
H12B0.88030.33310.70540.080*
H12C0.83030.47770.76780.080*
C130.7706 (2)0.1986 (3)0.1243 (2)0.0268 (5)
C140.8912 (3)0.1923 (3)0.0435 (3)0.0450 (7)
H14A0.98470.19440.10380.080*
H14B0.90530.27430.01740.080*
H14C0.86010.1042−0.04180.080*
H40.319 (3)0.334 (3)0.384 (3)0.023 (6)*
H20.351 (3)0.118 (3)0.003 (3)0.027 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01590 (12)0.01845 (13)0.02150 (14)0.00555 (9)0.00670 (9)0.00546 (10)
N10.0212 (8)0.0212 (9)0.0221 (10)0.0048 (7)0.0071 (7)0.0068 (8)
N20.0227 (8)0.0215 (10)0.0224 (10)0.0043 (7)0.0060 (7)0.0047 (8)
N30.0179 (7)0.0201 (9)0.0239 (10)0.0087 (7)0.0071 (7)0.0064 (8)
N40.0182 (8)0.0218 (9)0.0241 (10)0.0090 (7)0.0086 (7)0.0078 (8)
O10.0202 (7)0.0217 (8)0.0275 (9)0.0083 (6)0.0053 (6)0.0057 (7)
O20.0331 (8)0.0240 (8)0.0318 (9)0.0132 (7)0.0121 (7)0.0088 (7)
O30.0225 (7)0.0264 (8)0.0282 (9)0.0029 (6)0.0101 (6)0.0046 (7)
O40.0274 (8)0.0259 (8)0.0331 (10)0.0053 (7)0.0110 (7)0.0024 (7)
C10.0259 (10)0.0257 (11)0.0233 (12)0.0093 (8)0.0126 (9)0.0102 (10)
C20.0303 (11)0.0317 (12)0.0293 (13)0.0140 (9)0.0125 (10)0.0151 (11)
C30.0215 (9)0.0365 (13)0.0242 (12)0.0094 (9)0.0096 (9)0.0126 (10)
C40.0364 (11)0.0227 (11)0.0294 (13)0.0073 (9)0.0106 (10)0.0097 (10)
C50.0264 (11)0.0475 (15)0.0279 (13)0.0065 (10)0.0030 (10)0.0109 (12)
C60.0225 (9)0.0204 (10)0.0233 (11)0.0077 (8)0.0063 (8)0.0069 (9)
C70.0208 (9)0.0273 (11)0.0302 (12)0.0035 (8)0.0076 (9)0.0123 (10)
C80.0175 (9)0.0267 (11)0.0214 (11)0.0057 (8)0.0054 (8)0.0069 (9)
C90.0336 (11)0.0251 (12)0.0473 (16)0.0153 (10)0.0167 (11)0.0155 (11)
C100.0225 (10)0.0410 (14)0.0336 (13)0.0129 (10)0.0137 (10)0.0118 (12)
C110.0185 (9)0.0244 (11)0.0256 (12)0.0059 (8)0.0086 (8)0.0073 (9)
C120.0298 (11)0.0380 (14)0.0276 (13)0.0105 (10)0.0049 (10)0.0048 (11)
C130.0203 (9)0.0308 (12)0.0238 (12)0.0061 (9)0.0048 (9)0.0053 (10)
C140.0316 (12)0.0565 (18)0.0360 (15)0.0053 (12)0.0197 (11)0.0029 (14)

Geometric parameters (Å, °)

Cu1—N11.9851 (18)C4—H4B0.9600
Cu1—N31.9925 (16)C4—H4C0.9600
Cu1—O11.9909 (15)C5—H5A0.9600
Cu1—O22.4774 (18)C5—H5B0.9600
Cu1—O32.0045 (14)C5—H5C0.9600
Cu1—O42.4603 (16)C6—C71.402 (3)
N1—C11.338 (3)C6—C91.492 (3)
N1—N21.355 (3)C7—C81.377 (3)
N2—C31.342 (3)C7—H70.9300
N2—H20.82 (3)C8—C101.497 (3)
N3—C61.333 (3)C9—H9A0.9600
N3—N41.361 (2)C9—H9B0.9600
N4—C81.343 (3)C9—H9C0.9600
N4—H40.87 (3)C10—H10A0.9600
O1—C111.266 (3)C10—H10B0.9600
O2—C111.256 (2)C10—H10C0.9600
O3—C131.262 (3)C11—C121.502 (3)
O4—C131.250 (3)C12—H12A0.9600
C1—C21.405 (3)C12—H12B0.9600
C1—C41.485 (3)C12—H12C0.9600
C2—C31.377 (3)C13—C141.513 (3)
C2—H2A0.9300C14—H14A0.9600
C3—C51.492 (3)C14—H14B0.9600
C4—H4A0.9600C14—H14C0.9600
N1—Cu1—O1170.00 (7)C3—C5—H5A109.5
N1—Cu1—N389.80 (7)C3—C5—H5B109.5
O1—Cu1—N391.52 (7)H5A—C5—H5B109.5
N1—Cu1—O390.43 (7)C3—C5—H5C109.5
O1—Cu1—O390.04 (6)H5A—C5—H5C109.5
N3—Cu1—O3169.70 (7)H5B—C5—H5C109.5
N1—Cu1—O491.91 (7)N3—C6—C7109.75 (17)
O1—Cu1—O496.79 (6)N3—C6—C9121.28 (18)
N3—Cu1—O4111.84 (6)C7—C6—C9128.9 (2)
O3—Cu1—O457.86 (6)C8—C7—C6106.03 (18)
N1—Cu1—O2112.23 (6)C8—C7—H7127.0
O1—Cu1—O257.78 (6)C6—C7—H7127.0
N3—Cu1—O295.42 (7)N4—C8—C7106.80 (17)
O3—Cu1—O294.03 (6)N4—C8—C10121.04 (19)
O4—Cu1—O2143.81 (5)C7—C8—C10132.2 (2)
C1—N1—N2106.62 (17)C6—C9—H9A109.5
C1—N1—Cu1130.74 (16)C6—C9—H9B109.5
N2—N1—Cu1122.49 (13)H9A—C9—H9B109.5
C3—N2—N1111.34 (19)C6—C9—H9C109.5
C3—N2—H2125.2 (19)H9A—C9—H9C109.5
N1—N2—H2123.2 (18)H9B—C9—H9C109.5
C6—N3—N4106.06 (15)C8—C10—H10A109.5
C6—N3—Cu1131.10 (13)C8—C10—H10B109.5
N4—N3—Cu1122.80 (13)H10A—C10—H10B109.5
C8—N4—N3111.35 (17)C8—C10—H10C109.5
C8—N4—H4127.8 (15)H10A—C10—H10C109.5
N3—N4—H4119.9 (15)H10B—C10—H10C109.5
C11—O1—Cu1101.34 (13)O2—C11—O1121.5 (2)
C11—O2—Cu179.30 (13)O2—C11—C12120.4 (2)
C13—O3—Cu1100.41 (13)O1—C11—C12118.11 (19)
C13—O4—Cu179.78 (13)C11—C12—H12A109.5
N1—C1—C2109.0 (2)C11—C12—H12B109.5
N1—C1—C4120.58 (19)H12A—C12—H12B109.5
C2—C1—C4130.46 (19)C11—C12—H12C109.5
C3—C2—C1106.30 (19)H12A—C12—H12C109.5
C3—C2—H2A126.8H12B—C12—H12C109.5
C1—C2—H2A126.8O4—C13—O3121.95 (19)
N2—C3—C2106.8 (2)O4—C13—C14120.2 (2)
N2—C3—C5121.5 (2)O3—C13—C14117.8 (2)
C2—C3—C5131.7 (2)C13—C14—H14A109.5
C1—C4—H4A109.5C13—C14—H14B109.5
C1—C4—H4B109.5H14A—C14—H14B109.5
H4A—C4—H4B109.5C13—C14—H14C109.5
C1—C4—H4C109.5H14A—C14—H14C109.5
H4A—C4—H4C109.5H14B—C14—H14C109.5
H4B—C4—H4C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.82 (3)1.92 (3)2.726 (3)166 (3)
N4—H4···O2ii0.87 (3)1.91 (3)2.732 (2)157 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2196).

References

  • Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). Eur. J. Inorg. Chem. pp. 2942–2946.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Deka, K., Laskar, M. & Baruah, B. J. (2006). Polyhedron, 25, 2525–2529.
  • Fritsky, I. O., Lampeka, R. D., Kravtsov, V. Kh. & Simonov, Y. A. (1993). Acta Cryst. C49, 1041–1044.
  • Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994a). Russ. J. Inorg. Chem. (Engl. Transl.), 39, 771–776.
  • Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994b). Zh. Neorg. Chim.39, 805–810.
  • Halcrow, M. A. (2001). Angew. Chem. Int. Ed.40, 346–349. [PubMed]
  • Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871. [PubMed]
  • Karmakar, A., Bania, K., Baruah, A. M. & Baruah, B. J. (2007). Inorg. Chem. Commun.10, 959–964.
  • Krämer, R. (1999). Coord. Chem. Rev.182, 211–243.
  • Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.
  • Porai-Koshits, M. A. (1980). J. Struct. Chem.21, 147–180.
  • Pradeep, P., Supriya, S., Zacharias, P. S. & Das, S. K. (2006). Polyhedron, 25, 3588–3592.
  • Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed.38, 1632–1634.
  • Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skopenko, V. V., Lampeka, R. D. & Fritsky, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.
  • Stoe & Cie (2002). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography