PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1423.
Published online 2009 May 29. doi:  10.1107/S1600536809019278
PMCID: PMC2969788

4-Nitro­benzyl 2-chloro­acetate

Abstract

In the mol­ecule of the title compound, C9H8ClNO4, the nearly planar acetate moiety [maximum deviation = 0.015 (3) Å for an O atom] is oriented with respect to the plane of the aromatic ring at a dihedral angle of 73.03 (3)°. In the crystal structure, inter­molecular C—H(...)O inter­actions link mol­ecules into a network. π–π contacts between benzene rings [centroid–centroid distance = 4.000 (1) Å] may further stabilize the structure.

Related literature

For a related structure, see: Pyun et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1423-scheme1.jpg

Experimental

Crystal data

  • C9H8ClNO4
  • M r = 229.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1423-efi1.jpg
  • a = 13.636 (3) Å
  • b = 8.1570 (16) Å
  • c = 18.878 (4) Å
  • β = 108.30 (3)°
  • V = 1993.5 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.896, T max = 0.963
  • 1892 measured reflections
  • 1814 independent reflections
  • 1132 reflections with I > 2σ(I)
  • R int = 0.055
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.191
  • S = 1.00
  • 1814 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019278/hk2695sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019278/hk2695Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of p-nitrobenzyl alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Atoms N, C3, O3 and O4 are 0.005 (3), 0.027 (3), -0.146 (3) and 0.144 (4) Å away from the ring plane, respectively. On the other hand, (O1/O2/C1-C3) moiety is nearly planar with a maximum deviation of 0.015 (3) Å for atom O2 and it is oriented with respect to ring A at a dihedral angle of 73.03 (3)°.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, -y, -z, where Cg1 is centroid of the ring A (C4-C9) may further stabilize the structure, with centroid-centroid distance of 4.000 (1) Å.

Experimental

For the preparation of the title compound, chloroacetyl chloride (1.1 g) and p-nitrobenzyl alcohol (1.53 g) were added into the mixture of pyridine (15 ml) and dichloromethane (30 ml) at 273–278 K. The gross products were extracted with n-hexane, washed with water, and dried under vaccum, and then recrystallized in dichloromethane (yield; 0.916 g) (Pyun et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H8ClNO4F(000) = 944
Mr = 229.61Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.636 (3) Åθ = 9–13°
b = 8.1570 (16) ŵ = 0.38 mm1
c = 18.878 (4) ÅT = 294 K
β = 108.30 (3)°Block, colorless
V = 1993.5 (8) Å30.30 × 0.20 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer1132 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
graphiteθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = −16→0
Absorption correction: ψ scan (North et al., 1968)k = −9→0
Tmin = 0.896, Tmax = 0.963l = −21→22
1892 measured reflections3 standard reflections every 120 min
1814 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 2P] where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.85639 (10)0.10201 (17)0.74171 (7)0.0745 (5)
O10.6449 (2)0.0812 (4)0.75755 (16)0.0561 (8)
O20.6848 (2)0.2403 (4)0.86053 (15)0.0528 (8)
O30.6555 (4)−0.3688 (5)1.1134 (2)0.1110 (17)
O40.6159 (3)−0.5146 (4)1.0154 (2)0.0854 (11)
N0.6314 (3)−0.3823 (5)1.0467 (2)0.0567 (10)
C10.8107 (3)0.2211 (5)0.8028 (3)0.0578 (11)
H1A0.85820.21140.85310.069*
H1B0.80850.33550.78830.069*
C20.7037 (3)0.1679 (5)0.8022 (2)0.0444 (9)
C30.5855 (3)0.2023 (5)0.8709 (2)0.0531 (11)
H3A0.53340.18680.82280.064*
H3B0.56410.29270.89610.064*
C40.5956 (3)0.0483 (5)0.9169 (2)0.0411 (9)
C50.6365 (3)0.0540 (5)0.9945 (2)0.0518 (10)
H5A0.65680.15451.01770.062*
C60.6476 (3)−0.0835 (5)1.0369 (2)0.0544 (11)
H6A0.6741−0.07681.08860.065*
C70.6192 (3)−0.2331 (5)1.0024 (2)0.0465 (10)
C80.5789 (3)−0.2437 (5)0.9254 (2)0.0505 (10)
H8A0.5596−0.34460.90230.061*
C90.5679 (3)−0.1045 (5)0.8843 (2)0.0507 (10)
H9A0.5411−0.11160.83260.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0709 (9)0.0894 (9)0.0776 (9)−0.0099 (7)0.0438 (7)−0.0052 (7)
O10.0460 (17)0.0621 (18)0.0581 (17)−0.0091 (14)0.0132 (14)−0.0194 (15)
O20.0569 (18)0.0581 (17)0.0450 (15)−0.0098 (14)0.0182 (13)−0.0066 (13)
O30.195 (5)0.079 (3)0.056 (2)−0.008 (3)0.036 (3)0.008 (2)
O40.104 (3)0.056 (2)0.097 (3)0.005 (2)0.033 (2)0.009 (2)
N0.055 (2)0.052 (2)0.066 (3)0.0018 (18)0.0231 (19)0.0086 (19)
C10.054 (3)0.061 (3)0.060 (3)−0.012 (2)0.020 (2)−0.004 (2)
C20.040 (2)0.043 (2)0.046 (2)−0.0012 (19)0.0078 (18)0.0066 (19)
C30.045 (2)0.059 (3)0.059 (3)0.0026 (19)0.023 (2)−0.004 (2)
C40.036 (2)0.047 (2)0.044 (2)−0.0013 (17)0.0165 (16)−0.0054 (17)
C50.053 (3)0.048 (2)0.055 (3)−0.007 (2)0.018 (2)−0.012 (2)
C60.052 (3)0.061 (3)0.046 (2)−0.003 (2)0.0091 (19)−0.010 (2)
C70.035 (2)0.056 (2)0.051 (2)0.0016 (19)0.0182 (18)0.002 (2)
C80.056 (3)0.044 (2)0.052 (2)−0.011 (2)0.019 (2)−0.004 (2)
C90.051 (2)0.063 (3)0.039 (2)−0.008 (2)0.0163 (18)−0.009 (2)

Geometric parameters (Å, °)

Cl—C11.765 (4)C3—H3B0.9700
O1—C21.195 (5)C4—C91.389 (5)
O2—C21.344 (5)C4—C51.394 (5)
O2—C31.461 (5)C5—C61.359 (6)
N—O31.203 (5)C5—H5A0.9300
N—O41.217 (5)C6—C71.381 (6)
N—C71.457 (5)C6—H6A0.9300
C1—C21.519 (6)C7—C81.385 (6)
C1—H1A0.9700C8—C91.357 (6)
C1—H1B0.9700C8—H8A0.9300
C3—C41.509 (6)C9—H9A0.9300
C3—H3A0.9700
C2—O2—C3116.2 (3)C9—C4—C5117.4 (4)
O3—N—O4122.7 (4)C9—C4—C3121.9 (3)
O3—N—C7118.0 (4)C5—C4—C3120.7 (4)
O4—N—C7119.4 (4)C6—C5—C4121.7 (4)
C2—C1—Cl111.9 (3)C6—C5—H5A119.2
C2—C1—H1A109.2C4—C5—H5A119.2
Cl—C1—H1A109.2C5—C6—C7119.3 (4)
C2—C1—H1B109.2C5—C6—H6A120.4
Cl—C1—H1B109.2C7—C6—H6A120.4
H1A—C1—H1B107.9C6—C7—C8120.7 (4)
O1—C2—O2125.3 (4)C6—C7—N120.2 (4)
O1—C2—C1127.2 (4)C8—C7—N119.1 (4)
O2—C2—C1107.4 (3)C9—C8—C7118.9 (4)
O2—C3—C4109.5 (3)C9—C8—H8A120.5
O2—C3—H3A109.8C7—C8—H8A120.5
C4—C3—H3A109.8C8—C9—C4122.1 (4)
O2—C3—H3B109.8C8—C9—H9A119.0
C4—C3—H3B109.8C4—C9—H9A119.0
H3A—C3—H3B108.2
C3—O2—C2—O12.8 (6)C5—C6—C7—N179.3 (4)
C3—O2—C2—C1−178.9 (3)O3—N—C7—C68.3 (6)
Cl—C1—C2—O1−14.4 (6)O4—N—C7—C6−172.6 (4)
Cl—C1—C2—O2167.3 (3)O3—N—C7—C8−171.9 (5)
C2—O2—C3—C486.8 (4)O4—N—C7—C87.3 (6)
O2—C3—C4—C9−96.3 (4)C6—C7—C8—C90.1 (6)
O2—C3—C4—C581.6 (5)N—C7—C8—C9−179.7 (4)
C9—C4—C5—C6−1.1 (6)C7—C8—C9—C4−0.2 (6)
C3—C4—C5—C6−179.1 (4)C5—C4—C9—C80.7 (6)
C4—C5—C6—C71.0 (7)C3—C4—C9—C8178.6 (4)
C5—C6—C7—C8−0.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.972.353.275 (5)160
C3—H3A···O1ii0.972.583.456 (5)151

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2695).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950–1952.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography