PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m625–m626.
Published online 2009 May 14. doi:  10.1107/S1600536809016729
PMCID: PMC2969783

catena-Poly[[tetraaquanickel(II)]-μ3-benzene-1,3,5-tricarboxylato-3′:1:2-κ4 O 1:O 3,O 3′:O 5-[tetraaquanickel(II)]-μ2-benzene-1,3,5-tricarboxylato-2:3κ2 O 1:O 3-[tetraaquanickel(II)]]

Abstract

The microwave solvothermal reaction of nickel nitrate with trimesic acid provided the title compound, [Ni3(BTC)2(H2O)12]n (BTC = benzene-1,3,5-tricarboxyl­ate anion, C9H3O6), which is a metal coordination polymer composed of one-dimensional zigzag chains. The crystal under investigation was ramecically twinned with an approximate twin domain ratio of 1:1. In the asymmetric unit, there are two types of Ni atoms. One of the NiO6 groups (2 symmetry) is coordinated to only one carboxyl­ate group and thus terminal, the other is bridging, forming the coordination polymer. The extended chains are connected by the organic BTC anions via μ 2-linkages. O—H(...)O hydrogen bonds and π–π inter­actions between the chains [centroid–centroid distance 3.58 (1) Å] induce the complex to mimic a three-dimensional structure.

Related literature

For background information on the solvothermal synthesis of coordination polymers with organic carboxyl­ate ligands, see: Kitagawa et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m625-scheme1.jpg

Experimental

Crystal data

  • [Ni3(C9H3O6)2(H2O)12]
  • M r = 806.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m625-efi1.jpg
  • a = 17.3394 (10) Å
  • b = 12.8724 (7) Å
  • c = 6.5462 (3) Å
  • β = 111.609 (2)°
  • V = 1358.42 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.17 mm−1
  • T = 295 K
  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.613, T max = 0.737
  • 6798 measured reflections
  • 3299 independent reflections
  • 3156 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.068
  • S = 1.07
  • 3299 reflections
  • 208 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1531 Friedel pairs
  • Flack parameter: 0.549 (12)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016729/zl2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016729/zl2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research project was supported by the National Science Council of Taiwan (NSC97–2113-M-033–003-MY2) and by the project of the specific research fields of Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR—CH.

supplementary crystallographic information

Comment

The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, and luminescence. A large number of these materials have been synthesized by solvothermal reactions with organic carboxyl acids (Kitagawa et al. 2004). The coordination polymers commonly adopt three-dimensional, two-dimensional, and one-dimensional structures via employed metal ions as connectors and rigid or flexible organic ligands as linkers. As a further study of such a complex, we report here the structure of the title compound, a nickel coordination polymer with one dimensional zigzag chains.

The crystal structure analysis of the title compound reveals the structure to be composed of zigzag chains. The compound has a non-centrosymmetric C2 space group and the crystal under investigation was twinned with a Flack parameter of 0.549 (12). The asymmetric unit contains two types of NiO6 groups (Fig. 1). The group of Ni1 is terminal and the metal atom is coordinated in a bidentate fashion to one carboxylate ligand and to four water oxygen atoms. The other nickel atom, Ni2, is coordinated in the axial positions by two monodenate carboxylate groups, and by four water molecules in the equatorial positions. All Ni–O bond lengths range from 2.021 (3) to 2.102 (3) Å. The BTC anions also have two types of coordination modes towards the NiO6 groups. One of the BTC bridges between two Ni2 atoms via two of its carboxylate groups. The third carboxylate is protonated and not metal coordinated. The other BTC ligand bridges via two of its carboxylates between two Ni2 atoms. Its third carboxylate group coordinates to a Ni1 atom. The one-dimensional chains thus formed are further linked with each other by hydrogen bonds and π-π interactions to form a layered structure. Hydrogen bonding interactions between coordination waters are O2–H2B···O5ix, O3–H3A···O4viii, O4–H4B···O10, O4–H4C···O1iii, O5–H5A···O11, O6–H6A···O11vi, O6–H6B···O1v, and O9–H9B···O10iii (Fig. 2). The uncoordinated carboxylate group is involved in hydrogen bonding via O2–H2A···O12x, O3–H3B···O12vii, O5–H5B···O12vi, and O9–H9A···O12iv between nearby layers (Fig. 3, see table 1 for numerical values and symmetry operators). π-π stacking interactions are found between aromatic rings made up of C1 to C5, C1ii and C5ii, and the ring defined by C2, C7, C9, C10, C10i and C9i (symmetry operators: (i) -x+1, y, -z; (ii) -x+2, y, -z+1). The centroid to centroid distance between Cg1 and Cg2ix defined by the two rings is 3.58 (1) Å. The rings are slipped against each other, and the approximate interplanar distance is 3.27 Å (as defined by the distance of carbon atom C4 and Cg2ix (symmetry operator: (ix) 1/2+x, -1/2+y, z). These π-π interactions connect nearby layers with each other (Fig. 4).

Experimental

The title complex was obtained from the reaction of 1,3,5-benzenetricarboxylic acid (C9H6O6, H3BTC, 0.421 g, 2 mmol), Ni(NO3)2.6H2O (0.8724 g, 3 mmol), ethanol (5.0 ml) and H2O (5.0 ml) with pH value of 2.15. The reaction mixture was heated to 453 K for 20 minutes using a microwave output power of 400 W. The title compound in the form of green crystals was collected in a yield of 0.0979 g (12.2%, based on carboxylic acid reagent).

Refinement

The hydrogen atoms of benzene rings are placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The hydrogen atoms of water molecules were found in difference Fourier maps and were refined using distance constraints with O—H = 0.81 to 0.96 Å with Uiso(H) = 1.2 Ueq(O). Friedel pairs were not merged prior to refinement. The value of the Flack parameter and its standard uncertainty were determined by full-matrix least-squares refinement using the TWIN/BASF commands in the SHELXTL program. It refined to 0.55 (1).

Figures

Fig. 1.
A view of the title compound, showing 50% probability displacement ellipsoids. [symmetry codes: (i) -x+1, y, -z; (ii) -x+2, y, -z+1].
Fig. 2.
The zigzag chains of the title compound with hydrogen bonding (blue dashed lines, H atoms are omitted).
Fig. 3.
The packing diagram of zigzag chains with hydrogen bonding (blue dashed lines, H atoms are omitted).
Fig. 4.
The side view of the layers with the pi-pi interactions (blue dashed lines, H atoms are omitted).

Crystal data

[Ni3(C9H3O6)2(H2O)12]F(000) = 828
Mr = 806.49Dx = 1.972 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4802 reflections
a = 17.3394 (10) Åθ = 2.5–28.3°
b = 12.8724 (7) ŵ = 2.17 mm1
c = 6.5462 (3) ÅT = 295 K
β = 111.609 (2)°Columnar, light-blue
V = 1358.42 (12) Å30.25 × 0.18 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3299 independent reflections
Radiation source: fine-focus sealed tube3156 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −23→22
Tmin = 0.613, Tmax = 0.737k = −16→17
6798 measured reflectionsl = −7→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068w = 1/[σ^2^(Fo^2^) + (0.0363P)^2^] where P = (Fo^2^ + 2Fc^2^)/3
S = 1.07(Δ/σ)max = 0.001
3299 reflectionsΔρmax = 0.48 e Å3
208 parametersΔρmin = −0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 1531 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.549 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.68238 (4)0.00000.02554 (13)
Ni20.757745 (18)−0.02765 (2)0.22999 (5)0.01825 (9)
O10.56460 (12)0.54287 (15)0.1157 (3)0.0269 (4)
O20.58008 (19)0.7828 (2)0.1959 (5)0.0659 (10)
H2A0.57290.81770.29780.079*
H2B0.61130.81410.14600.079*
O30.44433 (15)0.68727 (18)0.2333 (4)0.0396 (5)
H3A0.41010.63820.26570.047*
H3B0.43820.75460.28220.047*
O40.83989 (12)0.08047 (16)0.4286 (3)0.0259 (4)
H4B0.80290.12740.44390.031*
H4C0.87080.05770.56830.031*
O50.67707 (12)−0.13068 (15)0.0142 (3)0.0229 (4)
H5A0.7035−0.18380.02460.028*
H5B0.6543−0.1191−0.13540.028*
O60.77890 (12)0.03467 (16)−0.0377 (3)0.0316 (5)
H6A0.75950.0949−0.08290.038*
H6B0.82900.0322−0.06980.038*
O70.85264 (11)−0.12996 (14)0.3010 (3)0.0223 (4)
O80.65774 (12)0.06587 (15)0.1685 (3)0.0237 (4)
O90.73419 (13)−0.09194 (17)0.4944 (3)0.0299 (5)
H9A0.6945−0.08320.52920.036*
H9B0.7453−0.15630.53460.036*
O100.71601 (12)0.21051 (15)0.3445 (3)0.0271 (4)
O110.78560 (12)−0.27492 (14)0.1508 (3)0.0253 (4)
O120.93126 (13)−0.61400 (16)0.4291 (4)0.0333 (5)
C10.92709 (16)−0.3961 (2)0.3927 (4)0.0156 (5)
H1A0.8781−0.43240.32160.019*
C20.50000.1625 (3)0.00000.0159 (7)
H2C0.50000.09030.00000.019*
C31.0000−0.4499 (3)0.50000.0157 (7)
C41.0000−0.2341 (3)0.50000.0158 (6)
H4A1.0000−0.16180.50000.019*
C50.92667 (15)−0.28782 (19)0.3907 (4)0.0149 (5)
C60.65536 (16)0.1604 (2)0.2156 (4)0.0178 (5)
C70.50000.3778 (3)0.00000.0163 (7)
C80.84852 (15)−0.2270 (2)0.2722 (4)0.0159 (5)
C90.57403 (16)0.2158 (2)0.1077 (4)0.0159 (5)
C100.57306 (15)0.3237 (2)0.1084 (4)0.0167 (5)
H10A0.62180.36010.18210.020*
C110.50000.4925 (3)0.00000.0204 (8)
C121.0000−0.5673 (3)0.50000.0211 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0250 (3)0.0154 (2)0.0335 (3)0.0000.0076 (2)0.000
Ni20.01496 (14)0.01230 (14)0.02472 (16)0.00137 (13)0.00407 (11)0.00049 (13)
O10.0201 (10)0.0127 (9)0.0360 (11)−0.0018 (8)−0.0037 (9)−0.0020 (8)
O20.081 (2)0.065 (2)0.0751 (18)−0.0546 (18)0.0557 (17)−0.0443 (17)
O30.0483 (14)0.0264 (11)0.0539 (13)−0.0045 (11)0.0305 (11)−0.0004 (11)
O40.0207 (10)0.0182 (10)0.0317 (11)0.0019 (8)0.0013 (9)−0.0023 (9)
O50.0204 (9)0.0168 (10)0.0260 (9)0.0023 (7)0.0019 (8)−0.0001 (8)
O60.0284 (11)0.0259 (11)0.0450 (12)0.0085 (9)0.0187 (10)0.0130 (9)
O70.0154 (9)0.0131 (9)0.0353 (11)0.0028 (7)0.0057 (8)0.0000 (8)
O80.0203 (9)0.0134 (9)0.0345 (11)0.0048 (7)0.0068 (9)−0.0024 (8)
O90.0294 (11)0.0268 (11)0.0337 (10)0.0060 (9)0.0120 (9)0.0091 (8)
O100.0203 (10)0.0203 (10)0.0335 (10)0.0044 (8)0.0013 (9)−0.0056 (8)
O110.0179 (9)0.0163 (9)0.0327 (10)0.0029 (7)−0.0014 (8)−0.0047 (8)
O120.0333 (12)0.0145 (10)0.0376 (12)−0.0044 (9)−0.0040 (10)0.0022 (9)
C10.0168 (12)0.0127 (12)0.0161 (12)−0.0027 (10)0.0045 (10)−0.0025 (9)
C20.0224 (17)0.0081 (16)0.0183 (16)0.0000.0089 (14)0.000
C30.0200 (17)0.0096 (16)0.0155 (16)0.0000.0039 (14)0.000
C40.0202 (16)0.0100 (15)0.0184 (15)0.0000.0085 (13)0.000
C50.0142 (11)0.0137 (11)0.0157 (11)0.0025 (8)0.0042 (9)0.0000 (8)
C60.0193 (12)0.0174 (13)0.0171 (11)0.0021 (10)0.0073 (10)0.0016 (9)
C70.0194 (17)0.0130 (16)0.0167 (16)0.0000.0068 (14)0.000
C80.0159 (11)0.0145 (12)0.0187 (11)0.0010 (9)0.0081 (9)−0.0004 (9)
C90.0183 (12)0.0134 (11)0.0178 (12)0.0025 (9)0.0087 (10)0.0006 (9)
C100.0144 (11)0.0156 (12)0.0194 (12)−0.0013 (9)0.0052 (10)0.0002 (9)
C110.0188 (16)0.016 (2)0.0235 (17)0.0000.0036 (14)0.000
C120.029 (2)0.0099 (17)0.0175 (17)0.0000.0009 (15)0.000

Geometric parameters (Å, °)

Ni1—O2i1.983 (3)O9—H9A0.8087
Ni1—O21.983 (3)O9—H9B0.8686
Ni1—O3i2.087 (2)O10—C61.257 (3)
Ni1—O32.087 (2)O11—C81.250 (3)
Ni1—O1i2.1043 (19)O12—C121.261 (3)
Ni1—O12.1043 (19)C1—C31.385 (3)
Ni1—C112.445 (4)C1—C51.393 (4)
Ni2—O72.0235 (18)C1—H1A0.9300
Ni2—O82.026 (2)C2—C91.396 (3)
Ni2—O52.0630 (19)C2—C9i1.396 (3)
Ni2—O42.0716 (19)C2—H2C0.9300
Ni2—O62.0787 (19)C3—C1ii1.385 (3)
Ni2—O92.090 (2)C3—C121.512 (5)
O1—C111.275 (3)C4—C51.392 (3)
O2—H2A0.8508C4—C5ii1.392 (3)
O2—H2B0.8329C4—H4A0.9300
O3—H3A0.9431C5—C81.509 (3)
O3—H3B0.9439C6—C91.504 (3)
O4—H4B0.9132C7—C101.390 (3)
O4—H4C0.9216C7—C10i1.390 (3)
O5—H5A0.8116C7—C111.476 (5)
O5—H5B0.9233C9—C101.390 (3)
O6—H6A0.8533C10—H10A0.9300
O6—H6B0.9664C11—O1i1.275 (3)
O7—C81.261 (3)C12—O12ii1.261 (3)
O8—C61.260 (3)
O2i—Ni1—O298.7 (2)H5A—O5—H5B103.5
O2i—Ni1—O3i84.80 (10)Ni2—O6—H6A118.3
O2—Ni1—O3i92.94 (10)Ni2—O6—H6B128.5
O2i—Ni1—O392.94 (10)H6A—O6—H6B103.1
O2—Ni1—O384.80 (10)C8—O7—Ni2127.85 (17)
O3i—Ni1—O3176.54 (13)C6—O8—Ni2128.92 (18)
O2i—Ni1—O1i99.80 (12)Ni2—O9—H9A128.6
O2—Ni1—O1i160.42 (11)Ni2—O9—H9B122.6
O3i—Ni1—O1i95.20 (9)H9A—O9—H9B99.5
O3—Ni1—O1i87.75 (9)C3—C1—C5120.4 (2)
O2i—Ni1—O1160.42 (11)C3—C1—H1A119.8
O2—Ni1—O199.80 (12)C5—C1—H1A119.8
O3i—Ni1—O187.75 (9)C9—C2—C9i121.2 (3)
O3—Ni1—O195.20 (9)C9—C2—H2C119.4
O1i—Ni1—O162.84 (10)C9i—C2—H2C119.4
O2i—Ni1—C11130.67 (11)C1ii—C3—C1119.9 (3)
O2—Ni1—C11130.67 (11)C1ii—C3—C12120.03 (16)
O3i—Ni1—C1191.73 (7)C1—C3—C12120.03 (16)
O3—Ni1—C1191.73 (7)C5—C4—C5ii120.4 (3)
O1i—Ni1—C1131.42 (5)C5—C4—H4A119.8
O1—Ni1—C1131.42 (5)C5ii—C4—H4A119.8
O7—Ni2—O8175.21 (9)C4—C5—C1119.4 (2)
O7—Ni2—O591.60 (7)C4—C5—C8118.9 (2)
O8—Ni2—O586.05 (8)C1—C5—C8121.6 (2)
O7—Ni2—O488.86 (8)O10—C6—O8124.4 (2)
O8—Ni2—O493.77 (8)O10—C6—C9118.7 (2)
O5—Ni2—O4176.11 (9)O8—C6—C9116.9 (2)
O7—Ni2—O693.66 (8)C10—C7—C10i119.9 (3)
O8—Ni2—O690.41 (8)C10—C7—C11120.07 (17)
O5—Ni2—O687.51 (8)C10i—C7—C11120.07 (17)
O4—Ni2—O688.61 (8)O11—C8—O7124.9 (2)
O7—Ni2—O986.70 (8)O11—C8—C5118.6 (2)
O8—Ni2—O989.18 (8)O7—C8—C5116.5 (2)
O5—Ni2—O991.29 (8)C10—C9—C2118.9 (2)
O4—Ni2—O992.59 (8)C10—C9—C6118.9 (2)
O6—Ni2—O9178.76 (9)C2—C9—C6122.2 (2)
C11—O1—Ni189.19 (17)C9—C10—C7120.6 (3)
Ni1—O2—H2A125.6C9—C10—H10A119.7
Ni1—O2—H2B117.6C7—C10—H10A119.7
H2A—O2—H2B110.8O1—C11—O1i118.8 (3)
Ni1—O3—H3A130.1O1—C11—C7120.61 (16)
Ni1—O3—H3B114.6O1i—C11—C7120.61 (16)
H3A—O3—H3B112.3O1—C11—Ni159.39 (16)
Ni2—O4—H4B99.5O1i—C11—Ni159.39 (16)
Ni2—O4—H4C115.0C7—C11—Ni1180.0
H4B—O4—H4C106.1O12ii—C12—O12123.1 (4)
Ni2—O5—H5A105.4O12ii—C12—C3118.45 (18)
Ni2—O5—H5B122.7O12—C12—C3118.45 (18)

Symmetry codes: (i) −x+1, y, −z; (ii) −x+2, y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9B···O10iii0.871.902.767 (3)172
O9—H9A···O12iv0.812.333.102 (3)160
O6—H6B···O1v0.971.982.942 (3)173
O6—H6A···O11vi0.851.832.683 (3)173
O5—H5B···O12vi0.921.952.825 (3)158
O5—H5A···O110.811.792.559 (3)156
O4—H4C···O1iii0.921.972.870 (3)167
O4—H4B···O100.911.772.617 (3)154
O3—H3B···O12vii0.941.972.907 (3)171
O3—H3A···O4viii0.942.032.917 (3)156
O2—H2B···O5ix0.831.812.638 (3)173
O2—H2A···O12x0.852.022.861 (4)171

Symmetry codes: (iii) −x+3/2, y−1/2, −z+1; (iv) −x+3/2, y+1/2, −z+1; (v) −x+3/2, y−1/2, −z; (vi) −x+3/2, y+1/2, −z; (vii) x−1/2, y+3/2, z; (viii) x−1/2, y+1/2, z; (ix) x, y+1, z; (x) −x+3/2, y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2190).

References

  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography