PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m700.
Published online 2009 May 29. doi:  10.1107/S1600536809019989
PMCID: PMC2969781

Sodium N-chloro-2-methyl­benzene­sulfonamidate sesquihydrate

Abstract

In the title salt, Na+·C7H7ClNO2S·1.5H2O, one of the water mol­ecules lies on a twofold axis. The sodium ion shows an O6 octa­hedral coordination defined by three water O atoms and three sulfonyl O atoms derived from three different anions. The S—N distance of 1.5898 (19) Å is consistent with an S=N double bond. The crystal structure is stabilized by N—H(...)O and O—H(...)Cl hydrogen bonds.

Related literature

For background to N-halo-aryl­sulfonamides, see: Gowda et al. (2005 [triangle]). For related structures, see: Gowda et al. (2007a [triangle],b [triangle],c [triangle]); George et al. (2000 [triangle]); Olmstead & Power (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m700-scheme1.jpg

Experimental

Crystal data

  • Na+·C7H7ClNO2S·1.5H2O
  • M r = 509.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m700-efi1.jpg
  • a = 11.011 (1) Å
  • b = 6.6434 (6) Å
  • c = 14.447 (1) Å
  • β = 100.350 (7)°
  • V = 1039.61 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.60 mm−1
  • T = 299 K
  • 0.45 × 0.32 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.776, T max = 0.954
  • 3268 measured reflections
  • 1657 independent reflections
  • 1613 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.061
  • S = 1.02
  • 1657 reflections
  • 142 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 617 Friedel pairs
  • Flack parameter: 0.02 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019989/tk2451sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019989/tk2451Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

The chemistry of N-halo-arylsulfonamides is of interest due to their diverse characteristics (Gowda et al., 2005). In the present work, the structure of sodium N-chloro-2-methyl- benzenesulfonamidate (I) has been determined to explore substituent effects on the solid-state structures of N-halo arylsulfonamidates (Gowda et al., 2007a, b, c). The structure of (I), Fig. 1, resembles the sodium salts of N-chloro-4-chloro-benzenesulfonamidate (Gowda et al., 2007a), N-chloro-2-methyl-4-chloro-benzenesulfonamidate (Gowda et al., 2007b), N-bromo-benzenesulfonamidate (Gowda et al., 2007c), and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986). The sodium ion shows octahedral coordination defined by three water-O atoms and by three sulfonyl-O atoms derived from three different anions. There is no interaction between the nitrogen and sodium ions in (I). The N1—S1 distance of 1.5898 (19) Å is consistent with a S—N double bond and is in agreement with those observed with related N-chloro arylsulfonamides. In this description, the negative charge on the anion is distributed over the oxygen atoms. With the association described above for the Na+ ion along with N-H···O and O-H···Cl hydrogen bonding, Table 1, the molecular packing comprises layers stacked along the c axis (Fig. 2).

Experimental

The purity of the commmercial sample (TCI Chemicals, Tokyo Kasei) was checked and characterized by recording its infrared and NMR spectra and estimating the amount of active chlorine present in it by the iodometric method (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in a water solution of (I) by slow evaporation at room temperature.

Refinement

The O-bound H atoms were located in difference map and their positional parameters were refined freely [O—H = 0.77 (3)– 0.83 (3) Å]. The other H atoms were positioned in their idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of (I), extended to show the immediate coordination geometry of the sodium cation. Only atoms comprising the asymmetric unit are labelled. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure of (I) as viewed down the b axis, showing the O3W—H31···Cl1, O3W—H32···N1 and O4W—H41···N1 hydrogen bonds as dashed lines.

Crystal data

Na+·C7H7ClNO2S·1.5H2OF(000) = 524
Mr = 509.32Dx = 1.627 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3049 reflections
a = 11.011 (1) Åθ = 2.6–27.5°
b = 6.6434 (6) ŵ = 0.60 mm1
c = 14.447 (1) ÅT = 299 K
β = 100.350 (7)°Plate, colourless
V = 1039.61 (15) Å30.45 × 0.32 × 0.08 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector1657 independent reflections
Radiation source: fine-focus sealed tube1613 reflections with I > 2σ(I)
graphiteRint = 0.018
Rotation method data acquisition using ω and [var phi] scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −13→12
Tmin = 0.776, Tmax = 0.954k = −7→8
3268 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061w = 1/[σ2(Fo2) + (0.041P)2 + 0.5427P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.017
1657 reflectionsΔρmax = 0.25 e Å3
142 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 617 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (6)

Special details

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.38269 (5)0.04628 (9)0.25363 (4)0.03904 (16)
S10.36260 (4)0.41295 (8)0.33507 (3)0.02316 (13)
Na10.14461 (8)0.19582 (15)0.47389 (6)0.0333 (2)
O10.24978 (13)0.3583 (3)0.36677 (10)0.0367 (4)
O20.43766 (13)0.5621 (3)0.39333 (10)0.0320 (4)
O30.29326 (15)0.3727 (3)0.59025 (12)0.0365 (4)
H310.258 (3)0.402 (5)0.6345 (18)0.044*
H320.354 (3)0.324 (5)0.615 (2)0.044*
O40.00000.4675 (4)0.50000.0358 (6)
H41−0.015 (3)0.534 (5)0.4534 (18)0.043*
N10.45553 (16)0.2319 (3)0.32989 (12)0.0286 (4)
C10.31412 (18)0.5172 (3)0.22046 (13)0.0254 (4)
C20.3987 (2)0.5799 (4)0.16471 (15)0.0310 (5)
C30.3489 (3)0.6595 (4)0.07650 (16)0.0442 (6)
H30.40260.70450.03800.053*
C40.2246 (3)0.6740 (5)0.04438 (17)0.0533 (7)
H40.19540.7255−0.01530.064*
C50.1428 (3)0.6125 (5)0.10021 (19)0.0503 (7)
H50.05820.62330.07880.060*
C60.1876 (2)0.5343 (4)0.18857 (16)0.0367 (5)
H60.13280.49300.22680.044*
C70.5365 (2)0.5657 (5)0.19499 (17)0.0410 (6)
H7A0.56000.42700.20400.049*
H7B0.56100.63780.25290.049*
H7C0.57630.62330.14730.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0411 (3)0.0278 (3)0.0496 (3)−0.0037 (2)0.0118 (2)−0.0106 (3)
S10.0232 (2)0.0237 (3)0.0231 (2)−0.0006 (2)0.00549 (16)−0.0007 (2)
Na10.0316 (5)0.0327 (5)0.0374 (4)−0.0053 (4)0.0114 (4)−0.0002 (4)
O10.0316 (8)0.0456 (12)0.0360 (8)−0.0025 (7)0.0143 (6)0.0047 (7)
O20.0343 (8)0.0302 (10)0.0305 (7)−0.0028 (7)0.0034 (6)−0.0084 (6)
O30.0270 (8)0.0421 (12)0.0396 (8)0.0008 (7)0.0040 (6)−0.0010 (7)
O40.0457 (14)0.0257 (14)0.0342 (11)0.0000.0025 (10)0.000
N10.0262 (9)0.0240 (11)0.0342 (9)−0.0005 (7)0.0016 (7)−0.0019 (7)
C10.0296 (10)0.0206 (12)0.0250 (9)−0.0003 (9)0.0024 (7)−0.0009 (8)
C20.0383 (12)0.0250 (14)0.0306 (10)−0.0045 (9)0.0091 (8)−0.0017 (9)
C30.0646 (17)0.0364 (17)0.0332 (11)−0.0040 (13)0.0132 (11)0.0056 (11)
C40.076 (2)0.0450 (18)0.0334 (12)0.0053 (15)−0.0048 (13)0.0079 (12)
C50.0449 (15)0.0508 (18)0.0478 (14)0.0069 (12)−0.0115 (11)−0.0001 (12)
C60.0319 (11)0.0337 (14)0.0432 (11)0.0019 (10)0.0033 (9)0.0007 (11)
C70.0357 (12)0.0449 (17)0.0457 (12)−0.0071 (11)0.0163 (10)0.0029 (12)

Geometric parameters (Å, °)

Cl1—N11.7491 (19)O3—H310.83 (3)
S1—O11.4454 (15)O3—H320.77 (3)
S1—O21.4571 (16)O4—Na1iv2.480 (2)
S1—N11.5898 (19)O4—H410.80 (3)
S1—C11.785 (2)C1—C61.391 (3)
S1—Na1i3.3517 (10)C1—C21.399 (3)
Na1—O12.3549 (17)C2—C31.397 (3)
Na1—O32.4283 (18)C2—C71.505 (3)
Na1—O2ii2.4319 (16)C3—C41.367 (4)
Na1—O42.480 (2)C3—H30.9300
Na1—O3ii2.483 (2)C4—C51.375 (4)
Na1—O2iii2.5266 (16)C4—H40.9300
Na1—S1ii3.3517 (10)C5—C61.384 (4)
Na1—Na1iv3.4021 (16)C5—H50.9300
Na1—Na1i4.0447 (10)C6—H60.9300
Na1—Na1ii4.0447 (10)C7—H7A0.9600
O2—Na1i2.4319 (16)C7—H7B0.9600
O2—Na1v2.5266 (16)C7—H7C0.9600
O3—Na1i2.483 (2)
O1—S1—O2114.72 (9)O3—Na1—Na1ii88.59 (6)
O1—S1—N1114.96 (10)O2ii—Na1—Na1ii80.53 (5)
O2—S1—N1103.80 (9)O4—Na1—Na1ii158.72 (5)
O1—S1—C1105.10 (9)O3ii—Na1—Na1ii34.12 (4)
O2—S1—C1108.43 (10)O2iii—Na1—Na1ii103.70 (5)
N1—S1—C1109.72 (9)S1ii—Na1—Na1ii58.91 (2)
O1—S1—Na1i74.39 (7)Na1iv—Na1—Na1ii119.16 (2)
N1—S1—Na1i125.01 (7)Na1i—Na1—Na1ii110.42 (4)
C1—S1—Na1i119.92 (8)S1—O1—Na1151.10 (10)
O1—Na1—O383.29 (6)S1—O2—Na1i116.81 (8)
O1—Na1—O2ii169.34 (7)S1—O2—Na1v151.20 (10)
O3—Na1—O2ii86.05 (6)Na1i—O2—Na1v86.63 (5)
O1—Na1—O499.86 (6)Na1—O3—Na1i110.90 (7)
O3—Na1—O485.06 (6)Na1—O3—H31107 (2)
O2ii—Na1—O478.79 (5)Na1i—O3—H31107 (2)
O1—Na1—O3ii87.14 (7)Na1—O3—H32123 (2)
O3—Na1—O3ii118.69 (5)Na1i—O3—H32105 (2)
O2ii—Na1—O3ii98.34 (7)H31—O3—H32103 (3)
O4—Na1—O3ii156.00 (6)Na1iv—O4—Na186.61 (9)
O1—Na1—O2iii111.58 (6)Na1iv—O4—H41119 (2)
O3—Na1—O2iii158.28 (7)Na1—O4—H41108 (2)
O2ii—Na1—O2iii78.57 (6)S1—N1—Cl1109.69 (10)
O4—Na1—O2iii77.02 (5)C6—C1—C2121.0 (2)
O3ii—Na1—O2iii79.06 (6)C6—C1—S1116.98 (16)
O1—Na1—S1ii152.30 (5)C2—C1—S1122.02 (15)
O3—Na1—S1ii79.28 (5)C3—C2—C1116.5 (2)
O2ii—Na1—S1ii22.83 (4)C3—C2—C7119.9 (2)
O4—Na1—S1ii99.90 (4)C1—C2—C7123.7 (2)
O3ii—Na1—S1ii82.61 (5)C4—C3—C2122.7 (2)
O2iii—Na1—S1ii91.68 (5)C4—C3—H3118.6
O1—Na1—Na1iv137.40 (5)C2—C3—H3118.6
O3—Na1—Na1iv112.82 (5)C3—C4—C5120.1 (2)
O2ii—Na1—Na1iv47.85 (4)C3—C4—H4119.9
O4—Na1—Na1iv46.69 (4)C5—C4—H4119.9
O3ii—Na1—Na1iv114.48 (5)C4—C5—C6119.3 (2)
O2iii—Na1—Na1iv45.53 (4)C4—C5—H5120.3
S1ii—Na1—Na1iv69.87 (2)C6—C5—H5120.3
O1—Na1—Na1i54.03 (5)C5—C6—C1120.4 (2)
O3—Na1—Na1i34.99 (5)C5—C6—H6119.8
O2ii—Na1—Na1i115.82 (6)C1—C6—H6119.8
O4—Na1—Na1i74.73 (4)C2—C7—H7A109.5
O3ii—Na1—Na1i126.33 (6)C2—C7—H7B109.5
O2iii—Na1—Na1i144.54 (5)H7A—C7—H7B109.5
S1ii—Na1—Na1i113.86 (3)C2—C7—H7C109.5
Na1iv—Na1—Na1i119.16 (2)H7A—C7—H7C109.5
O1—Na1—Na1ii99.54 (6)H7B—C7—H7C109.5
O2—S1—O1—Na1−71.5 (3)O2ii—Na1—O4—Na1iv−41.12 (4)
N1—S1—O1—Na148.8 (2)O3ii—Na1—O4—Na1iv44.21 (14)
C1—S1—O1—Na1169.5 (2)O2iii—Na1—O4—Na1iv39.58 (4)
Na1i—S1—O1—Na1−73.0 (2)S1ii—Na1—O4—Na1iv−49.86 (2)
O3—Na1—O1—S149.7 (2)Na1i—Na1—O4—Na1iv−162.08 (4)
O2ii—Na1—O1—S151.7 (5)Na1ii—Na1—O4—Na1iv−54.89 (12)
O4—Na1—O1—S1133.4 (2)O1—S1—N1—Cl158.78 (12)
O3ii—Na1—O1—S1−69.7 (2)O2—S1—N1—Cl1−175.11 (9)
O2iii—Na1—O1—S1−146.7 (2)C1—S1—N1—Cl1−59.39 (13)
S1ii—Na1—O1—S1−1.5 (3)Na1i—S1—N1—Cl1146.70 (6)
Na1iv—Na1—O1—S1166.35 (18)O1—S1—C1—C63.1 (2)
Na1i—Na1—O1—S170.6 (2)O2—S1—C1—C6−119.99 (19)
Na1ii—Na1—O1—S1−37.8 (2)N1—S1—C1—C6127.3 (2)
O1—S1—O2—Na1i−2.28 (14)Na1i—S1—C1—C6−77.3 (2)
N1—S1—O2—Na1i−128.55 (10)O1—S1—C1—C2−177.07 (18)
C1—S1—O2—Na1i114.82 (10)O2—S1—C1—C259.8 (2)
O1—S1—O2—Na1v139.18 (19)N1—S1—C1—C2−52.9 (2)
N1—S1—O2—Na1v12.9 (2)Na1i—S1—C1—C2102.50 (18)
C1—S1—O2—Na1v−103.7 (2)C6—C1—C2—C30.0 (3)
Na1i—S1—O2—Na1v141.5 (3)S1—C1—C2—C3−179.79 (19)
O1—Na1—O3—Na1i30.30 (8)C6—C1—C2—C7179.9 (2)
O2ii—Na1—O3—Na1i−149.33 (8)S1—C1—C2—C70.2 (3)
O4—Na1—O3—Na1i−70.26 (7)C1—C2—C3—C4−0.9 (4)
O3ii—Na1—O3—Na1i113.32 (11)C7—C2—C3—C4179.1 (3)
O2iii—Na1—O3—Na1i−104.58 (18)C2—C3—C4—C51.3 (5)
S1ii—Na1—O3—Na1i−171.33 (7)C3—C4—C5—C6−0.6 (5)
Na1iv—Na1—O3—Na1i−108.70 (6)C4—C5—C6—C1−0.3 (5)
Na1ii—Na1—O3—Na1i130.07 (7)C2—C1—C6—C50.6 (4)
O1—Na1—O4—Na1iv149.64 (6)S1—C1—C6—C5−179.6 (2)
O3—Na1—O4—Na1iv−128.06 (5)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+1; (iii) x−1/2, y−1/2, z; (iv) −x, y, −z+1; (v) x+1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H31···Cl1i0.83 (3)2.62 (3)3.4266 (19)167 (3)
O3—H32···N1vi0.77 (3)2.19 (3)2.951 (3)168 (3)
O4—H41···N1vii0.80 (3)2.19 (3)2.989 (2)176 (3)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (vi) −x+1, y, −z+1; (vii) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2451).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209. [PubMed]
  • Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet.37, 572–582.
  • Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1644-m1645.
  • Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007b). Z. Naturforsch. Teil A, 62, 417–424.
  • Gowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, m1739–m1740.
  • Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem.25, 4057–4058.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography