PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1425.
Published online 2009 May 29. doi:  10.1107/S1600536809019333
PMCID: PMC2969772

5-(3-Fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

Abstract

The title compound, C8H6FN3S, was synthesized by the reaction of 3-fluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the planes of the thia­diazole and benzene rings is 37.3 (2)°. In the structure, two crystallographically independent mol­ecules form a centrosymmetric dimer, in which two inter­molecular N—H(...)N hydrogen bonds generate an R 2 2(8) motif.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996 [triangle]); Wang et al. (1999 [triangle]). For a similar structure, see: Wan et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1425-scheme1.jpg

Experimental

Crystal data

  • C8H6FN3S
  • M r = 195.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1425-efi2.jpg
  • a = 11.345 (2) Å
  • b = 7.3130 (15) Å
  • c = 11.269 (2) Å
  • β = 111.64 (3)°
  • V = 869.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.935, T max = 0.967
  • 1667 measured reflections
  • 1584 independent reflections
  • 1177 reflections with I > 2σ(I)
  • R int = 0.021
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.124
  • S = 1.01
  • 1584 reflections
  • 118 parameters
  • 13 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019333/at2787sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019333/at2787Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and have published the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006). Here we report the crystal structure, (I).

In the title molecule (I), (Fig. 1), the dihedral angle between the thiadiazole and benzene ring is 37.3 (2)°, which is bigger than the angle in the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006), which is 30.1 (2)°. In the structure, two crystallographically independent molecules form a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8) (Fig. 2).

Experimental

3-Fluoro-benzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product (I) precipitated and was filted. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were placed geometrically with C—H = 0.93 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8).

Crystal data

C8H6FN3SF(000) = 400
Mr = 195.23Dx = 1.492 Mg m3
Monoclinic, P21/cMelting point: 515 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.345 (2) ÅCell parameters from 25 reflections
b = 7.3130 (15) Åθ = 10–13°
c = 11.269 (2) ŵ = 0.34 mm1
β = 111.64 (3)°T = 293 K
V = 869.0 (3) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = −13→0
Absorption correction: ψ scan (North et al., 1968)k = 0→8
Tmin = 0.935, Tmax = 0.967l = −12→13
1667 measured reflections3 standard reflections every 200 reflections
1584 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
1584 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.37 e Å3
13 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.82144 (7)0.08639 (11)0.55908 (6)0.0548 (3)
F0.5162 (3)−0.2428 (3)0.0198 (2)0.1125 (9)
N10.8658 (2)0.1443 (3)0.3566 (2)0.0523 (6)
C10.7322 (3)−0.2918 (5)0.3984 (3)0.0713 (9)
H1B0.7804−0.30360.48500.086*
N20.9262 (2)0.2841 (3)0.4381 (2)0.0551 (6)
C20.6592 (4)−0.4354 (5)0.3322 (4)0.0817 (11)
H2B0.6585−0.54430.37460.098*
N30.9606 (3)0.3931 (4)0.6429 (2)0.0733 (9)
H3A1.00430.48460.63400.088*
H3B0.94810.37870.71310.088*
C30.5871 (4)−0.4202 (5)0.2040 (4)0.0822 (12)
H3C0.5378−0.51750.15920.099*
C40.5898 (3)−0.2597 (6)0.1447 (3)0.0741 (10)
C50.6637 (3)−0.1132 (4)0.2071 (3)0.0639 (9)
H5A0.6658−0.00660.16280.077*
C60.7338 (3)−0.1272 (4)0.3350 (3)0.0516 (7)
C70.8082 (3)0.0307 (4)0.4039 (2)0.0475 (7)
C80.9121 (3)0.2733 (4)0.5476 (2)0.0499 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0686 (5)0.0626 (5)0.0402 (4)−0.0130 (4)0.0282 (3)0.0002 (3)
F0.1200 (19)0.122 (2)0.0888 (16)−0.0253 (16)0.0307 (14)−0.0193 (15)
N10.0646 (15)0.0583 (14)0.0421 (12)−0.0113 (12)0.0293 (11)−0.0079 (11)
C10.070 (2)0.068 (2)0.073 (2)−0.0121 (18)0.0235 (17)0.0023 (18)
N20.0753 (16)0.0580 (15)0.0433 (12)−0.0172 (13)0.0353 (12)−0.0097 (11)
C20.074 (2)0.060 (2)0.112 (3)−0.0081 (19)0.035 (2)0.001 (2)
N30.110 (2)0.0800 (19)0.0452 (14)−0.0379 (17)0.0462 (15)−0.0191 (13)
C30.074 (2)0.079 (3)0.104 (3)−0.020 (2)0.045 (2)−0.040 (2)
C40.075 (2)0.091 (3)0.062 (2)−0.024 (2)0.0319 (18)−0.0344 (19)
C50.075 (2)0.068 (2)0.0514 (17)−0.0144 (17)0.0271 (16)−0.0140 (16)
C60.0557 (17)0.0533 (17)0.0519 (16)0.0000 (13)0.0270 (14)−0.0051 (13)
C70.0541 (16)0.0513 (16)0.0421 (14)0.0000 (13)0.0236 (13)−0.0013 (12)
C80.0634 (18)0.0556 (17)0.0374 (13)−0.0068 (14)0.0265 (13)−0.0025 (13)

Geometric parameters (Å, °)

S—C81.744 (3)C2—H2B0.9300
S—C71.747 (3)N3—C81.338 (3)
F—C41.351 (4)N3—H3A0.8600
N1—C71.288 (3)N3—H3B0.8600
N1—N21.377 (3)C3—C41.357 (5)
C1—C21.375 (5)C3—H3C0.9300
C1—C61.403 (4)C4—C51.382 (4)
C1—H1B0.9300C5—C61.369 (4)
N2—C81.303 (3)C5—H5A0.9300
C2—C31.378 (5)C6—C71.472 (4)
C8—S—C786.76 (13)F—C4—C3118.3 (3)
C7—N1—N2114.0 (2)F—C4—C5119.0 (4)
C2—C1—C6119.8 (3)C3—C4—C5122.7 (3)
C2—C1—H1B120.1C6—C5—C4119.0 (3)
C6—C1—H1B120.1C6—C5—H5A120.5
C8—N2—N1112.5 (2)C4—C5—H5A120.5
C1—C2—C3120.9 (4)C5—C6—C1119.3 (3)
C1—C2—H2B119.6C5—C6—C7119.6 (3)
C3—C2—H2B119.6C1—C6—C7121.1 (3)
C8—N3—H3A120.0N1—C7—C6124.6 (2)
C8—N3—H3B120.0N1—C7—S113.2 (2)
H3A—N3—H3B120.0C6—C7—S122.1 (2)
C4—C3—C2118.3 (3)N2—C8—N3124.3 (3)
C4—C3—H3C120.9N2—C8—S113.5 (2)
C2—C3—H3C120.9N3—C8—S122.19 (19)
C7—N1—N2—C8−0.2 (4)N2—N1—C7—S0.5 (3)
C6—C1—C2—C3−0.1 (5)C5—C6—C7—N1−36.0 (4)
C1—C2—C3—C4−0.1 (6)C1—C6—C7—N1144.6 (3)
C2—C3—C4—F−178.1 (3)C5—C6—C7—S141.4 (3)
C2—C3—C4—C51.3 (6)C1—C6—C7—S−37.9 (4)
F—C4—C5—C6177.0 (3)C8—S—C7—N1−0.4 (2)
C3—C4—C5—C6−2.4 (5)C8—S—C7—C6−178.2 (2)
C4—C5—C6—C12.2 (5)N1—N2—C8—N3−179.5 (3)
C4—C5—C6—C7−177.2 (3)N1—N2—C8—S−0.1 (3)
C2—C1—C6—C5−1.0 (5)C7—S—C8—N20.3 (2)
C2—C1—C6—C7178.4 (3)C7—S—C8—N3179.7 (3)
N2—N1—C7—C6178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.981 (5)165

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2787).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wan, R., Han, F., Wu, F., Zhang, J.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o5547–o5548.
  • Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography