PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1257.
Published online 2009 May 14. doi:  10.1107/S1600536809016651
PMCID: PMC2969766

N′-(Phenyl­sulfon­yl)isonicotinohydrazide monohydrate

Abstract

In the title compound, C12H11N3O3S·H2O, the pyridine ring makes a dihedral angle of 24.78 (14)° with the phenyl ring. Intra­molecular N—H(...)O and inter­molecular O—H(...)O hydrogen bonds are observed and stabilize the packing in the crystal structure.

Related literature

For general background to hydrazide derivatives, see: Lemin (1961 [triangle]); Shanbhag et al. (2008 [triangle]); Zhen & Li (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1257-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O3S·H2O
  • M r = 295.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1257-efi1.jpg
  • a = 7.3525 (5) Å
  • b = 20.9324 (15) Å
  • c = 9.2443 (6) Å
  • β = 107.565 (2)°
  • V = 1356.41 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 273 K
  • 0.24 × 0.22 × 0.19 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.833, T max = 0.864 (expected range = 0.918–0.953)
  • 10653 measured reflections
  • 2343 independent reflections
  • 1981 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.120
  • S = 1.12
  • 2343 reflections
  • 189 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016651/at2777sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016651/at2777Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province and the Governor Foundation of Guizhou Province for financial support.

supplementary crystallographic information

Comment

Hydrazide derivatives investigated in the present work are non-toxic in nature, which play an important role in latex, plastic industry (Lemin et al., 1961; Zhen et al., 2008) and corrosion inhibition of mild steel in acidic medium (Shanbhag et al., 2008). In this paper, a substituted hydrazide, benzenesulfisoniazide, was synthesized in the solution of ethanol with benzenesulfonyl chloride and isoniazide in the ice-bath is reported.

The crystal of the title compound, (I), consists of N'-(phenylsulfinyl)isonicotinohydrazide and one water molecule, (Fig. 1). Pyridine ring makes a dihedral angle of 24.78 (14)° with the phenyl ring. The N—H···O hydrogen bonds are observed between N3 and the water molecule O1W, which the distance of the N3(H3N)···O1W hydrogen bonds is 2.779 (3) Å. In addition, there are O—H···O hydrogen bonds between O1W and O2 with distance of 2.857 (3) Å (Table 1). These hydrogen bonding interactions may help to establish the packing in the crystal structure.

Experimental

Solution of benzenesulfonyl chloride (0.04 mol) in ethanol was added to a stirred ethanol solution of isoniazid (0.02 mol) in the ice-bath, then the reaction was kept on for 2 h at room temperature. The solvent was removed by reduced pressure filter, the solid product was dissolved in 50 ml ethanol,. and then set aside for five days to obtain colourless crystals.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H11N3O3S·H2OF(000) = 616
Mr = 295.32Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2343 reflections
a = 7.3525 (5) Åθ = 2.0–25.0°
b = 20.9324 (15) ŵ = 0.26 mm1
c = 9.2443 (6) ÅT = 273 K
β = 107.565 (2)°Block, colourless
V = 1356.41 (16) Å30.24 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2343 independent reflections
Radiation source: fine-focus sealed tube1981 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.833, Tmax = 0.864k = −24→24
10653 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5954P] where P = (Fo2 + 2Fc2)/3
2343 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5180 (5)0.38868 (12)0.1480 (3)0.0457 (7)
H10.47800.37690.04630.055*
C20.5608 (5)0.45147 (13)0.1899 (3)0.0598 (9)
H20.55230.48100.11310.072*
C30.6284 (4)0.42875 (11)0.4392 (3)0.0339 (6)
H30.66530.44200.53990.041*
C40.5927 (3)0.36459 (11)0.4100 (2)0.0297 (5)
H40.60650.33590.48940.036*
C50.5361 (3)0.34348 (10)0.2611 (2)0.0257 (5)
C60.4884 (3)0.27532 (10)0.2125 (2)0.0253 (5)
C70.4594 (3)0.13874 (10)0.5560 (3)0.0289 (5)
C80.4371 (3)0.19677 (11)0.6218 (3)0.0322 (5)
H80.38440.23170.56160.039*
C90.4947 (4)0.20161 (12)0.7788 (3)0.0370 (6)
H90.48260.24030.82460.044*
C100.5702 (4)0.14896 (14)0.8673 (3)0.0424 (6)
H100.60660.15230.97250.051*
C110.5917 (4)0.09153 (13)0.8006 (3)0.0439 (7)
H110.64260.05650.86110.053*
C120.5379 (4)0.08587 (12)0.6439 (3)0.0359 (6)
H120.55400.04750.59860.043*
N10.6133 (3)0.47292 (9)0.3323 (2)0.0400 (5)
N20.5685 (3)0.23082 (8)0.31946 (19)0.0258 (4)
H2N0.63980.24250.40750.031*
N30.5352 (3)0.16619 (9)0.2867 (2)0.0293 (5)
H3N0.59250.14580.23240.035*
O10.3873 (2)0.26165 (8)0.08506 (16)0.0340 (4)
O20.2057 (2)0.16569 (8)0.30300 (19)0.0366 (4)
O30.3881 (3)0.06518 (8)0.31658 (19)0.0421 (5)
S10.38198 (8)0.13081 (3)0.35666 (6)0.0294 (2)
H1E0.942 (6)0.1209 (16)0.248 (4)0.063 (12)*
H1F0.849 (5)0.0671 (18)0.196 (4)0.063 (10)*
O1W0.8432 (3)0.10382 (10)0.2345 (2)0.0421 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.074 (2)0.0366 (14)0.0207 (12)−0.0022 (13)0.0047 (12)0.0032 (10)
C20.109 (3)0.0334 (15)0.0298 (14)−0.0045 (16)0.0109 (16)0.0109 (11)
C30.0439 (15)0.0309 (13)0.0245 (11)0.0031 (10)0.0068 (11)−0.0011 (10)
C40.0356 (14)0.0298 (13)0.0210 (11)0.0041 (10)0.0047 (10)0.0035 (9)
C50.0239 (12)0.0290 (12)0.0223 (11)0.0043 (9)0.0042 (9)0.0018 (9)
C60.0226 (12)0.0323 (12)0.0192 (11)0.0027 (9)0.0037 (9)0.0000 (9)
C70.0306 (13)0.0260 (12)0.0285 (12)−0.0040 (9)0.0064 (10)−0.0012 (9)
C80.0360 (14)0.0282 (12)0.0348 (12)−0.0019 (10)0.0144 (11)0.0008 (10)
C90.0384 (15)0.0392 (14)0.0378 (13)−0.0110 (11)0.0181 (12)−0.0107 (11)
C100.0422 (16)0.0572 (17)0.0273 (12)−0.0089 (13)0.0096 (11)−0.0029 (12)
C110.0493 (18)0.0434 (16)0.0350 (14)0.0029 (12)0.0068 (12)0.0098 (12)
C120.0393 (15)0.0298 (13)0.0341 (13)0.0012 (11)0.0044 (11)0.0001 (10)
N10.0537 (14)0.0300 (11)0.0331 (11)0.0006 (9)0.0084 (10)0.0014 (9)
N20.0283 (11)0.0243 (10)0.0191 (9)−0.0005 (7)−0.0015 (8)−0.0017 (7)
N30.0354 (12)0.0252 (10)0.0259 (9)0.0027 (8)0.0073 (8)−0.0044 (8)
O10.0341 (10)0.0392 (10)0.0205 (8)0.0009 (7)−0.0041 (7)−0.0024 (7)
O20.0273 (10)0.0362 (10)0.0401 (10)−0.0004 (7)0.0008 (7)0.0024 (7)
O30.0606 (13)0.0233 (9)0.0349 (9)−0.0036 (8)0.0031 (9)−0.0048 (7)
S10.0332 (4)0.0227 (3)0.0273 (3)−0.0019 (2)0.0014 (2)−0.0017 (2)
O1W0.0352 (12)0.0344 (11)0.0582 (12)−0.0005 (9)0.0161 (10)−0.0123 (9)

Geometric parameters (Å, °)

C1—C21.379 (4)C8—H80.9300
C1—C51.386 (3)C9—C101.385 (4)
C1—H10.9300C9—H90.9300
C2—N11.333 (3)C10—C111.382 (4)
C2—H20.9300C10—H100.9300
C3—N11.333 (3)C11—C121.386 (3)
C3—C41.379 (3)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.385 (3)N2—N31.392 (2)
C4—H40.9300N2—H2N0.8600
C5—C61.505 (3)N3—S11.635 (2)
C6—O11.223 (3)N3—H3N0.8600
C6—N21.356 (3)O2—S11.4393 (17)
C7—C81.390 (3)O3—S11.4272 (17)
C7—C121.392 (3)O1W—H1E0.78 (4)
C7—S11.764 (2)O1W—H1F0.86 (4)
C8—C91.387 (3)
C2—C1—C5118.5 (2)C10—C9—H9120.0
C2—C1—H1120.8C8—C9—H9120.0
C5—C1—H1120.8C11—C10—C9120.5 (2)
N1—C2—C1124.9 (2)C11—C10—H10119.7
N1—C2—H2117.6C9—C10—H10119.7
C1—C2—H2117.6C10—C11—C12120.4 (2)
N1—C3—C4124.2 (2)C10—C11—H11119.8
N1—C3—H3117.9C12—C11—H11119.8
C4—C3—H3117.9C11—C12—C7118.7 (2)
C3—C4—C5119.2 (2)C11—C12—H12120.7
C3—C4—H4120.4C7—C12—H12120.7
C5—C4—H4120.4C2—N1—C3115.6 (2)
C4—C5—C1117.6 (2)C6—N2—N3120.00 (17)
C4—C5—C6124.90 (19)C6—N2—H2N120.0
C1—C5—C6117.5 (2)N3—N2—H2N120.0
O1—C6—N2123.1 (2)N2—N3—S1116.82 (14)
O1—C6—C5121.90 (19)N2—N3—H3N121.6
N2—C6—C5115.02 (18)S1—N3—H3N121.6
C8—C7—C12121.5 (2)O3—S1—O2119.65 (11)
C8—C7—S1119.73 (18)O3—S1—N3104.70 (10)
C12—C7—S1118.79 (17)O2—S1—N3106.88 (10)
C9—C8—C7118.9 (2)O3—S1—C7109.64 (10)
C9—C8—H8120.6O2—S1—C7106.57 (11)
C7—C8—H8120.6N3—S1—C7109.05 (10)
C10—C9—C8120.1 (2)H1E—O1W—H1F108 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O1W0.862.042.779 (3)144
O1W—H1E···O2i0.78 (4)2.07 (4)2.857 (3)175 (4)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2777).

References

  • Bruker (2002). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lemin, A. J. (1961). US Patent 2993829.
  • Shanbhag, A. V., Venkatesha, T. V., Prabhu, R. A., Kalkhambkar, R. G. & Kulkarni, G. M. (2008). J. Appl. Electrochem.38, 279–287.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhen, X.-L. & Li, X.-L. (2008). Acta Cryst. E64, o2170. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography