PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1216.
Published online 2009 May 7. doi:  10.1107/S1600536809015785
PMCID: PMC2969762

2,10-Dihydr­oxy-13-methyl-13-aza­tetra­cyclo­[9.3.1.02,10.03,8]penta­deca-3(8),4,6-triene-9,15-dione

Abstract

In the title compound, C15H15NO4, the n-methyl­piperidone ring adopts a chair conformation and both five-membered rings adopt a twist conformation. An intra­molecular O—H(...)O hydrogen bond is observed. Inversion-related mol­ecules are linked into R 2 2(10) dimers by pairs of O—H(...)O hydrogen bonds. The crystal structure is further stabilized by C—H(...)O hydrogen bonds.

Related literature

For the biological activity of piperidine compounds, see: Watson et al. (2000 [triangle]). For ring conformation details, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1216-scheme1.jpg

Experimental

Crystal data

  • C15H15NO4
  • M r = 273.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1216-efi1.jpg
  • a = 7.5616 (7) Å
  • b = 8.9033 (8) Å
  • c = 10.8091 (11) Å
  • α = 72.764 (11)°
  • β = 80.486 (12)°
  • γ = 72.369 (11)°
  • V = 660.09 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.18 × 0.15 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.982, T max = 0.989
  • 2890 measured reflections
  • 2316 independent reflections
  • 2025 reflections with I > 2σ(I)
  • R int = 0.010
  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.11
  • 2316 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015785/ci2789sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015785/ci2789Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and UCN thank the Management of the Madura College, Madurai, for their constant support.

supplementary crystallographic information

Comment

The piperidine ring is a distinct structural feature of a variety of alkaloid natural products and drug candidates. Watson et al. (2000) observed that during the past decade there were thousands of piperidine compounds mentioned in clinical and preclinical studies. Piperidinones, though relatively less prominent, have also been regarded as precursors of a host of biologically active compounds and natural alkaloids, prior to their conversion to piperidines. Ninhydrin is a chemical used to detect ammonia or primary and secondary amines.

In the molecule of the title compound, (Fig. 1), the six-membered ring A (N1/C4/C5/C1/C2/C3), and the five membered rings B (C1/C2/C7/C6/C5) and C(C6-C10) are not planar. Rings B and C both adopt twist conformations, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.455 (2) Å and Φ = 160.4 (2)° for ring B, and Q = 0.149 (2) Å and Φ = 21.6 (6)° for ring C. Ring A adopts a chair conformation.

In the crystal structure, the molecules are linked to form dimers by intermolecular O—H···O hydrogen bonds (Table 1), generating a graph set motif of R22(10) (Fig.2). In addition, the structure is stabilized by C—H···O and van der Waals interactions.

Experimental

A mixture of 1-methyl-4-piperidinone (0.2 g, 0.002 mol), ninhydrin (0.315 g, 0.002 mol) and sarcosine (0.156 g, 0.002 mol) in methanol (30 ml) was refluxed in a water bath for 10 h. After completion of the reaction as monitored by TLC, the excess solvent was removed under vacuum and the residue was subjected to flash column chromatography using petroleum ether-ethyl acetate mixture (8:2 v/v) as eluent to obtain crystals of title compound in 8% yield along with a other product (yield 13%, m.p. 447–448 K).

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å, O-H = 0.82 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl,O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Fig. 2.
Partial packing view down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H15NO4Z = 2
Mr = 273.28F(000) = 288
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5616 (7) ÅCell parameters from 25 reflections
b = 8.9033 (8) Åθ = 2–25°
c = 10.8091 (11) ŵ = 0.10 mm1
α = 72.764 (11)°T = 293 K
β = 80.486 (12)°Block, colourless
γ = 72.369 (11)°0.18 × 0.15 × 0.11 mm
V = 660.09 (11) Å3

Data collection

Nonius MACH-3 diffractometer2025 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
graphiteθmax = 25.0°, θmin = 2.5°
ω–2θ scansh = −1→8
Absorption correction: ψ scan (North et al., 1968)k = −10→10
Tmin = 0.982, Tmax = 0.989l = −12→12
2890 measured reflections2 standard reflections every 60 min
2316 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1839P] where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.29809 (15)0.41843 (13)0.00498 (10)0.0446 (3)
O2−0.04087 (14)0.29519 (13)0.08496 (10)0.0421 (3)
H2−0.11390.38460.05810.063*
O3−0.02584 (16)0.06248 (14)0.30007 (11)0.0499 (3)
H3−0.07240.08520.23130.075*
N10.29935 (17)0.38335 (15)0.28995 (12)0.0388 (3)
O4−0.19177 (16)0.40313 (16)0.45054 (11)0.0538 (3)
C80.2679 (2)0.30815 (17)0.09849 (13)0.0353 (3)
C40.2670 (2)0.26334 (19)0.41090 (14)0.0403 (3)
H4A0.24450.31210.48320.048*
H4B0.37680.17120.42520.048*
C100.3067 (2)0.04870 (17)0.24458 (14)0.0372 (3)
C70.07412 (19)0.30768 (16)0.17048 (13)0.0322 (3)
C50.0984 (2)0.20371 (18)0.40485 (13)0.0375 (3)
H50.07300.12290.48470.045*
C60.1144 (2)0.14491 (16)0.28236 (13)0.0348 (3)
C90.3957 (2)0.14516 (17)0.14346 (14)0.0372 (3)
C1−0.0622 (2)0.35556 (19)0.37706 (14)0.0383 (3)
C30.1375 (2)0.52059 (18)0.25385 (15)0.0406 (3)
H3A0.16610.59590.17280.049*
H3B0.09690.57880.32090.049*
C2−0.0144 (2)0.44610 (17)0.23864 (13)0.0362 (3)
H2A−0.12200.52750.19700.043*
C140.5784 (2)0.0851 (2)0.09741 (16)0.0486 (4)
H140.63750.15030.03010.058*
C110.3986 (2)−0.11196 (19)0.30063 (17)0.0496 (4)
H110.3394−0.17770.36740.059*
C120.5804 (3)−0.1720 (2)0.25488 (18)0.0565 (5)
H120.6442−0.27940.29170.068*
C130.6699 (2)−0.0751 (2)0.15496 (19)0.0572 (5)
H130.7927−0.11830.12630.069*
C180.4702 (3)0.4293 (3)0.2839 (2)0.0624 (5)
H18A0.48810.50360.20100.094*
H18B0.57370.33340.29490.094*
H18C0.46150.48110.35170.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0438 (6)0.0456 (6)0.0332 (5)−0.0098 (5)0.0005 (4)0.0021 (5)
O20.0419 (6)0.0433 (6)0.0416 (6)−0.0060 (5)−0.0146 (5)−0.0116 (5)
O30.0522 (7)0.0488 (6)0.0518 (7)−0.0269 (5)−0.0081 (5)−0.0022 (5)
N10.0360 (7)0.0438 (7)0.0393 (7)−0.0155 (5)0.0001 (5)−0.0116 (5)
O40.0413 (6)0.0706 (8)0.0475 (7)−0.0118 (6)0.0104 (5)−0.0234 (6)
C80.0365 (8)0.0379 (7)0.0285 (7)−0.0084 (6)−0.0037 (6)−0.0053 (6)
C40.0413 (8)0.0455 (8)0.0329 (7)−0.0085 (6)−0.0075 (6)−0.0095 (6)
C100.0422 (8)0.0343 (7)0.0341 (7)−0.0068 (6)−0.0073 (6)−0.0090 (6)
C70.0320 (7)0.0335 (7)0.0289 (7)−0.0067 (6)−0.0057 (5)−0.0053 (6)
C50.0396 (8)0.0413 (8)0.0268 (7)−0.0130 (6)0.0003 (6)−0.0013 (6)
C60.0369 (8)0.0322 (7)0.0338 (7)−0.0120 (6)−0.0039 (6)−0.0030 (6)
C90.0378 (8)0.0387 (8)0.0326 (7)−0.0050 (6)−0.0052 (6)−0.0101 (6)
C10.0350 (8)0.0468 (8)0.0360 (8)−0.0141 (6)0.0002 (6)−0.0135 (6)
C30.0491 (9)0.0361 (8)0.0370 (8)−0.0128 (7)−0.0008 (6)−0.0100 (6)
C20.0349 (7)0.0354 (7)0.0339 (7)−0.0028 (6)−0.0053 (6)−0.0080 (6)
C140.0396 (8)0.0557 (10)0.0453 (9)−0.0037 (7)−0.0015 (7)−0.0160 (8)
C110.0600 (10)0.0342 (8)0.0482 (9)−0.0044 (7)−0.0111 (8)−0.0064 (7)
C120.0617 (11)0.0404 (9)0.0592 (11)0.0085 (8)−0.0191 (9)−0.0161 (8)
C130.0442 (9)0.0592 (11)0.0625 (11)0.0096 (8)−0.0102 (8)−0.0286 (9)
C180.0456 (10)0.0723 (12)0.0787 (13)−0.0281 (9)0.0013 (9)−0.0244 (10)

Geometric parameters (Å, °)

O1—C81.2285 (17)C5—C11.509 (2)
O2—C71.4171 (16)C5—C61.537 (2)
O2—H20.82C5—H50.98
O3—C61.4219 (17)C9—C141.387 (2)
O3—H30.82C1—C21.517 (2)
N1—C31.453 (2)C3—C21.541 (2)
N1—C181.455 (2)C3—H3A0.97
N1—C41.4613 (19)C3—H3B0.97
O4—C11.2088 (18)C2—H2A0.98
C8—C91.471 (2)C14—C131.385 (3)
C8—C71.5419 (19)C14—H140.93
C4—C51.539 (2)C11—C121.381 (3)
C4—H4A0.97C11—H110.93
C4—H4B0.97C12—C131.388 (3)
C10—C111.386 (2)C12—H120.93
C10—C91.391 (2)C13—H130.93
C10—C61.507 (2)C18—H18A0.96
C7—C21.5443 (19)C18—H18B0.96
C7—C61.5720 (18)C18—H18C0.96
C7—O2—H2109.5C14—C9—C8128.62 (14)
C6—O3—H3109.5C10—C9—C8109.95 (13)
C3—N1—C18114.32 (13)O4—C1—C5128.54 (14)
C3—N1—C4113.97 (12)O4—C1—C2126.94 (14)
C18—N1—C4112.86 (13)C5—C1—C2104.23 (11)
O1—C8—C9126.53 (13)N1—C3—C2105.67 (11)
O1—C8—C7124.00 (12)N1—C3—H3A110.6
C9—C8—C7108.44 (12)C2—C3—H3A110.6
N1—C4—C5110.50 (11)N1—C3—H3B110.6
N1—C4—H4A109.6C2—C3—H3B110.6
C5—C4—H4A109.6H3A—C3—H3B108.7
N1—C4—H4B109.6C1—C2—C3103.05 (11)
C5—C4—H4B109.6C1—C2—C7103.33 (11)
H4A—C4—H4B108.1C3—C2—C7109.41 (11)
C11—C10—C9120.35 (15)C1—C2—H2A113.4
C11—C10—C6128.39 (14)C3—C2—H2A113.4
C9—C10—C6111.20 (12)C7—C2—H2A113.4
O2—C7—C8108.50 (11)C13—C14—C9117.82 (16)
O2—C7—C2114.39 (11)C13—C14—H14121.1
C8—C7—C2115.40 (12)C9—C14—H14121.1
O2—C7—C6108.69 (11)C12—C11—C10118.30 (16)
C8—C7—C6103.21 (11)C12—C11—H11120.8
C2—C7—C6105.84 (11)C10—C11—H11120.8
C1—C5—C6100.91 (11)C11—C12—C13121.32 (15)
C1—C5—C4105.49 (12)C11—C12—H12119.3
C6—C5—C4112.08 (11)C13—C12—H12119.3
C1—C5—H5112.5C14—C13—C12120.77 (16)
C6—C5—H5112.5C14—C13—H13119.6
C4—C5—H5112.5C12—C13—H13119.6
O3—C6—C10114.30 (12)N1—C18—H18A109.5
O3—C6—C5106.98 (11)N1—C18—H18B109.5
C10—C6—C5114.94 (12)H18A—C18—H18B109.5
O3—C6—C7111.58 (11)N1—C18—H18C109.5
C10—C6—C7104.97 (11)H18A—C18—H18C109.5
C5—C6—C7103.62 (11)H18B—C18—H18C109.5
C14—C9—C10121.43 (14)
C3—N1—C4—C554.45 (16)C6—C10—C9—C14176.26 (14)
C18—N1—C4—C5−172.98 (13)C11—C10—C9—C8178.38 (14)
O1—C8—C7—O266.57 (17)C6—C10—C9—C8−4.31 (17)
C9—C8—C7—O2−102.49 (12)O1—C8—C9—C144.9 (3)
O1—C8—C7—C2−63.28 (18)C7—C8—C9—C14173.60 (15)
C9—C8—C7—C2127.66 (12)O1—C8—C9—C10−174.49 (14)
O1—C8—C7—C6−178.24 (13)C7—C8—C9—C10−5.78 (16)
C9—C8—C7—C612.70 (14)C6—C5—C1—O4138.05 (16)
N1—C4—C5—C1−56.97 (15)C4—C5—C1—O4−105.16 (17)
N1—C4—C5—C651.96 (16)C6—C5—C1—C2−47.81 (13)
C11—C10—C6—O3−48.1 (2)C4—C5—C1—C268.98 (13)
C9—C10—C6—O3134.84 (13)C18—N1—C3—C2168.31 (13)
C11—C10—C6—C576.15 (19)C4—N1—C3—C2−59.82 (15)
C9—C10—C6—C5−100.88 (14)O4—C1—C2—C398.33 (17)
C11—C10—C6—C7−170.70 (15)C5—C1—C2—C3−75.95 (13)
C9—C10—C6—C712.27 (15)O4—C1—C2—C7−147.76 (15)
C1—C5—C6—O3−80.03 (13)C5—C1—C2—C737.97 (14)
C4—C5—C6—O3168.14 (11)N1—C3—C2—C169.03 (14)
C1—C5—C6—C10151.91 (12)N1—C3—C2—C7−40.39 (14)
C4—C5—C6—C1040.09 (16)O2—C7—C2—C1106.41 (13)
C1—C5—C6—C737.97 (13)C8—C7—C2—C1−126.65 (12)
C4—C5—C6—C7−73.85 (14)C6—C7—C2—C1−13.22 (14)
O2—C7—C6—O3−23.90 (15)O2—C7—C2—C3−144.35 (12)
C8—C7—C6—O3−138.96 (12)C8—C7—C2—C3−17.42 (15)
C2—C7—C6—O399.41 (13)C6—C7—C2—C396.02 (13)
O2—C7—C6—C10100.42 (12)C10—C9—C14—C130.3 (2)
C8—C7—C6—C10−14.64 (14)C8—C9—C14—C13−178.97 (15)
C2—C7—C6—C10−136.28 (11)C9—C10—C11—C121.0 (2)
O2—C7—C6—C5−138.66 (11)C6—C10—C11—C12−175.81 (15)
C8—C7—C6—C5106.28 (12)C10—C11—C12—C13−0.3 (3)
C2—C7—C6—C5−15.36 (14)C9—C14—C13—C120.4 (3)
C11—C10—C9—C14−1.1 (2)C11—C12—C13—C14−0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O20.822.112.6080 (15)119
O2—H2···O1i0.821.902.7168 (15)175
C2—H2A···O1i0.982.593.3778 (18)137
C18—H18A···O1ii0.962.573.432 (2)149
C5—H5···O3iii0.982.463.4381 (18)173

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2789).

References

  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett.2, 3679–3681. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography