PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1245.
Published online 2009 May 14. doi:  10.1107/S1600536809016481
PMCID: PMC2969761

N-(Benzothia­zol-2-yl)-3-chloro­benzamide

Abstract

The title mol­ecule, C14H9ClN2OS, exists in the solid state in its amide form with a typical C=O bond length, as well as shortened C—N bonds. The plane containing the HNCO atoms subtends dihedral angles of 12.3 (4) and 8.1 (3)° with the planes of the phenyl ring and benzothia­zole group, respectively, whereas the dihedral angle between the planes of the phenyl ring and the benzothia­zole group is 5.96 (6)°. In the crystal, mol­ecules form inter­molecular N—H(...)N hydrogen bonds, generating independent scissor-like R 2 2(8) dimers.

Related literature

For geometric data, see: Allen et al. (1987 [triangle]); For related structures, see: Garden et al. (2005 [triangle]); Wardell et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1245-scheme1.jpg

Experimental

Crystal data

  • C14H9ClN2OS
  • M r = 288.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1245-efi1.jpg
  • a = 26.6613 (19) Å
  • b = 7.5766 (5) Å
  • c = 12.6729 (10) Å
  • β = 99.729 (6)°
  • V = 2523.1 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 173 K
  • 0.39 × 0.38 × 0.35 mm

Data collection

  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan [MULABS (Spek, 2009 [triangle]); Blessing, 1995 [triangle])] T min = 0.841, T max = 0.856
  • 9132 measured reflections
  • 2352 independent reflections
  • 2084 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.079
  • S = 1.03
  • 2352 reflections
  • 177 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016481/hg2508sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016481/hg2508Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MKR is grateful to the HEC, Pakistan, for financial support of the PhD program under scholarship No. ILC-0363104.

supplementary crystallographic information

Comment

We report here the structure of the title compound, (I) (Fig. 1), which has been separated from an impure sample of thiourea by column chromatography as a by-product, a part of our ongoing studies related to N,N'-disubstituted thioureas and heterocyclic compounds. These include N—H···N hydrogen bonds, with possible oxygen-sulfur intramolecular interactions (Fig. 2). In this class of componds, N—H···O, C—H···O and N—H···N hydrogen bonds, and weak π–π stacking interactions are the only direction-specific intermolecular interactions (Garden et al., 2005; Wardell et al., 2005). The molecules of (I) are nearly planar, as shown by the leading torsion angles [C11—C1—N1—C2 174.90 (12) and C1—N1—C2—N2 -171.57 (13)°], and the amide group adopts the usual trans conformation; the bond lengths and inter-bond angles present no unusual values (Allen et al., 1987).

Experimental

Freshly prepared and steam-distilled 3-chlorobenzoyl isothiocyanate (1.98 g, 10 mmol) was stirred in acetone (30 ml) for 20 min. Neat 2-aminobenzothiazole (1.50 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into 300 ml (approx.) acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water. One of the fraction obtained as a by-product during the column chromatography of the target thiourea was recrystallized from methanol/1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall fractional yield of 15%.

Refinement

H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to N was freely refined.

Figures

Fig. 1.
Molecular structure of (I) showing atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of (I) with view onto the ac plane. Hydrogen bonds shown as dashed lines. H atoms are omitted for clarity.

Crystal data

C14H9ClN2OSF(000) = 1184
Mr = 288.74Dx = 1.520 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8429 reflections
a = 26.6613 (19) Åθ = 3.6–25.9°
b = 7.5766 (5) ŵ = 0.46 mm1
c = 12.6729 (10) ÅT = 173 K
β = 99.729 (6)°Block, light yellow
V = 2523.1 (3) Å30.39 × 0.38 × 0.35 mm
Z = 8

Data collection

Stoe IPDS II two-circle diffractometer2352 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan [MULABS (Spek, 2009); Blessing, 1995)]h = −32→32
Tmin = 0.841, Tmax = 0.856k = −8→9
9132 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079w = 1/[σ2(Fo2) + (0.051P)2 + 0.8598P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2352 reflectionsΔρmax = 0.28 e Å3
177 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.762196 (14)0.69837 (6)0.65336 (3)0.03053 (14)
S10.500738 (13)0.23662 (5)0.45176 (3)0.01915 (13)
O10.58693 (4)0.40431 (15)0.51591 (8)0.0241 (3)
N10.54529 (4)0.34541 (16)0.65241 (10)0.0178 (3)
H10.5448 (7)0.325 (2)0.7252 (17)0.032 (5)*
C10.58602 (5)0.41061 (19)0.61190 (11)0.0179 (3)
N20.46256 (4)0.23590 (16)0.62817 (10)0.0185 (3)
C20.50288 (5)0.27653 (19)0.58813 (11)0.0167 (3)
C30.42583 (5)0.16277 (19)0.54925 (12)0.0185 (3)
C40.44015 (5)0.15038 (19)0.44819 (12)0.0191 (3)
C50.40794 (6)0.0750 (2)0.36146 (12)0.0242 (3)
H50.41790.06610.29320.029*
C60.36121 (6)0.0141 (2)0.37817 (13)0.0275 (4)
H60.3388−0.03910.32070.033*
C70.34626 (6)0.0292 (2)0.47829 (13)0.0273 (4)
H70.3136−0.01180.48730.033*
C80.37807 (5)0.1024 (2)0.56412 (12)0.0234 (3)
H80.36770.11170.63200.028*
C110.62782 (5)0.49568 (19)0.68791 (11)0.0188 (3)
C120.67079 (5)0.5438 (2)0.64573 (12)0.0200 (3)
H120.67340.51400.57400.024*
C130.70955 (5)0.6348 (2)0.70855 (12)0.0213 (3)
C140.70650 (6)0.6824 (2)0.81238 (12)0.0245 (3)
H140.73330.74630.85470.029*
C150.66341 (6)0.6349 (2)0.85358 (12)0.0249 (3)
H150.66070.66720.92480.030*
C160.62434 (6)0.5413 (2)0.79260 (12)0.0220 (3)
H160.59530.50830.82220.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0200 (2)0.0423 (3)0.0307 (2)−0.00460 (15)0.00835 (16)0.00331 (17)
S10.0228 (2)0.0232 (2)0.0121 (2)0.00280 (14)0.00466 (14)0.00001 (13)
O10.0263 (6)0.0325 (6)0.0148 (6)−0.0019 (4)0.0074 (4)−0.0004 (4)
N10.0188 (6)0.0221 (7)0.0128 (6)0.0014 (5)0.0041 (5)0.0011 (5)
C10.0199 (7)0.0189 (7)0.0161 (8)0.0046 (5)0.0061 (5)0.0018 (5)
N20.0183 (6)0.0227 (7)0.0143 (6)0.0024 (5)0.0019 (5)0.0000 (5)
C20.0207 (7)0.0178 (7)0.0121 (7)0.0050 (5)0.0040 (5)0.0019 (5)
C30.0203 (7)0.0188 (7)0.0156 (7)0.0042 (6)0.0008 (5)0.0014 (5)
C40.0220 (7)0.0184 (7)0.0167 (7)0.0044 (6)0.0024 (6)0.0011 (6)
C50.0322 (8)0.0214 (8)0.0172 (8)0.0050 (6)−0.0009 (6)−0.0020 (6)
C60.0301 (8)0.0230 (8)0.0256 (9)0.0001 (6)−0.0060 (6)−0.0029 (6)
C70.0233 (8)0.0253 (9)0.0311 (9)−0.0005 (6)−0.0015 (6)0.0036 (7)
C80.0225 (7)0.0260 (9)0.0215 (8)0.0026 (6)0.0030 (6)0.0032 (6)
C110.0220 (7)0.0182 (7)0.0170 (7)0.0033 (6)0.0053 (6)0.0021 (6)
C120.0220 (7)0.0228 (8)0.0162 (7)0.0034 (6)0.0061 (6)0.0008 (6)
C130.0198 (7)0.0231 (8)0.0221 (8)0.0012 (6)0.0067 (6)0.0048 (6)
C140.0280 (8)0.0240 (8)0.0202 (8)−0.0027 (6)0.0004 (6)0.0010 (6)
C150.0337 (8)0.0259 (8)0.0159 (7)−0.0028 (7)0.0063 (6)0.0000 (6)
C160.0267 (8)0.0241 (8)0.0173 (8)−0.0004 (6)0.0095 (6)0.0027 (6)

Geometric parameters (Å, °)

Cl1—C131.7386 (15)C6—C71.397 (2)
S1—C41.7360 (15)C6—H60.9500
S1—C21.7459 (14)C7—C81.378 (2)
O1—C11.2216 (18)C7—H70.9500
N1—C11.3696 (18)C8—H80.9500
N1—C21.3794 (18)C11—C161.389 (2)
N1—H10.94 (2)C11—C121.392 (2)
C1—C111.491 (2)C12—C131.378 (2)
N2—C21.3008 (19)C12—H120.9500
N2—C31.3912 (18)C13—C141.380 (2)
C3—C81.395 (2)C14—C151.388 (2)
C3—C41.400 (2)C14—H140.9500
C4—C51.397 (2)C15—C161.383 (2)
C5—C61.378 (2)C15—H150.9500
C5—H50.9500C16—H160.9500
C4—S1—C288.03 (7)C8—C7—H7119.4
C1—N1—C2122.53 (12)C6—C7—H7119.4
C1—N1—H1125.0 (11)C7—C8—C3118.64 (14)
C2—N1—H1111.8 (11)C7—C8—H8120.7
O1—C1—N1120.63 (13)C3—C8—H8120.7
O1—C1—C11121.46 (13)C16—C11—C12119.59 (14)
N1—C1—C11117.86 (12)C16—C11—C1124.15 (13)
C2—N2—C3109.98 (12)C12—C11—C1116.03 (12)
N2—C2—N1120.53 (13)C13—C12—C11119.64 (13)
N2—C2—S1117.01 (11)C13—C12—H12120.2
N1—C2—S1122.45 (11)C11—C12—H12120.2
N2—C3—C8125.53 (13)C12—C13—C14121.49 (14)
N2—C3—C4114.62 (13)C12—C13—Cl1118.93 (12)
C8—C3—C4119.85 (14)C14—C13—Cl1119.52 (12)
C5—C4—C3121.38 (14)C13—C14—C15118.48 (14)
C5—C4—S1128.30 (12)C13—C14—H14120.8
C3—C4—S1110.32 (11)C15—C14—H14120.8
C6—C5—C4117.87 (15)C16—C15—C14121.08 (14)
C6—C5—H5121.1C16—C15—H15119.5
C4—C5—H5121.1C14—C15—H15119.5
C5—C6—C7121.06 (14)C15—C16—C11119.71 (13)
C5—C6—H6119.5C15—C16—H16120.1
C7—C6—H6119.5C11—C16—H16120.1
C8—C7—C6121.19 (15)
C2—N1—C1—O1−2.6 (2)C5—C6—C7—C8−1.2 (2)
C2—N1—C1—C11174.90 (12)C6—C7—C8—C30.3 (2)
C3—N2—C2—N1−177.62 (12)N2—C3—C8—C7−178.45 (14)
C3—N2—C2—S11.43 (16)C4—C3—C8—C70.9 (2)
C1—N1—C2—N2−171.57 (13)O1—C1—C11—C16165.51 (14)
C1—N1—C2—S19.43 (19)N1—C1—C11—C16−11.9 (2)
C4—S1—C2—N2−1.80 (12)O1—C1—C11—C12−8.9 (2)
C4—S1—C2—N1177.23 (12)N1—C1—C11—C12173.61 (12)
C2—N2—C3—C8179.29 (14)C16—C11—C12—C130.5 (2)
C2—N2—C3—C4−0.12 (18)C1—C11—C12—C13175.22 (13)
N2—C3—C4—C5178.08 (13)C11—C12—C13—C14−1.1 (2)
C8—C3—C4—C5−1.4 (2)C11—C12—C13—Cl1−178.45 (11)
N2—C3—C4—S1−1.19 (16)C12—C13—C14—C150.7 (2)
C8—C3—C4—S1179.37 (11)Cl1—C13—C14—C15178.04 (12)
C2—S1—C4—C5−177.64 (15)C13—C14—C15—C160.3 (2)
C2—S1—C4—C31.56 (11)C14—C15—C16—C11−0.8 (2)
C3—C4—C5—C60.5 (2)C12—C11—C16—C150.4 (2)
S1—C4—C5—C6179.62 (12)C1—C11—C16—C15−173.83 (14)
C4—C5—C6—C70.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.94 (2)2.02 (2)2.9429 (18)168.9 (17)

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2508).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Garden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o450–o451. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography