PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1397.
Published online 2009 May 23. doi:  10.1107/S1600536809018765
PMCID: PMC2969759

4-[2-(1-Acetyl-2-oxopropyl­idene)­hydrazino]-N-(pyrimidin-2-yl)benzene­sulfonamide

Abstract

In the title compound, C15H15N5O4S, the dihedral angle between the pyrimidine and benzene rings is 84.56 (2)°. Intra­molecular hydrazine–carbonyl N—H(...)O and inter­molecular sulfonamide–pyridimine N—H(...)N hydrogen bonds stabilize the mol­ecular and crystal structures, respectively.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004 [triangle]); Badr (2008 [triangle]); Gale et al. (2007 [triangle]); Hanafy et al. (2007 [triangle]); Novinson et al. (1976 [triangle]); Supuran et al. (2003 [triangle]). For the synthesis of the title compound, see: Goyal & Bhargava (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1397-scheme1.jpg

Experimental

Crystal data

  • C15H15N5O4S
  • M r = 361.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1397-efi1.jpg
  • a = 11.354 (3) Å
  • b = 5.7875 (13) Å
  • c = 25.974 (6) Å
  • β = 101.877 (4)°
  • V = 1670.3 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2005 [triangle]) T min = 0.947, T max = 0.957
  • 17935 measured reflections
  • 3999 independent reflections
  • 3164 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.135
  • S = 1.07
  • 3999 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018765/tk2450sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018765/tk2450Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KKU and SU are grateful to the UGC, New Delhi, for financial support.

supplementary crystallographic information

Comment

Sulfa drugs and their derivatives have attracted much attention due to their wide spectrum of applications as compounds with anti-bacterial (Badr, 2008), anti-fungal (Hanafy et al., 2007), anti-viral (Supuran et al., 2003), anti-malarial (Gale et al., 2007), and anti-cancer (Abbate et al., 2004) activities. Although the title compound (I) been reported in the literature (Goyal & Bhargava, 1989), its crystal structure was not reported. The molecule of (I), Fig. 1, is-non planar as seen in arrangement of the two aromatic moieties attached to sulfonamide, –NHSO2-, group; the C1—S1—N1—C12 torsion angle is 68.66 (15)°. Within the molecule, there is a prominent intramolecular interaction between the hydrazo-N—H and the carbonyl-O3 atoms, Fig. 2 and Table 1. Intermolecular hydrogen bonds formed between centrosymmetrically related molecules involving the sulfonamide-N—H and the pyrimidine-N4 atoms lead to dimeric aggregates, Fig. 2 and Table 1.

Experimental

Compound (I) was synthesized using the literature procedure (Novinson et al., 1976) as follows. Sulfadiazine (2 mmol, 501 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by their cooling on crushed ice. The cooled sodium nitrite solution was added to the sulfdiazine solution with constant stirring while maintaining ice-cold temperature. The resulting yellow solution was added to a mixture of acetyl acetone (2 mmol, 0.2 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried in vacuo. Crystals of (I) were developed by layering its supersaturated solution in ethanol with diethylether and leaving for a few days.

Yield 78%. Spectroscopic anaylysis: 1H NMR (DMSO-d6, TMS, δ p.p.m.) 13.51 (1H, NH) 11.79 (1H, NH), 8.51–7.04 (7H, Ar—H), 2.54–2.42 (6H, CH3). 13C NMR (DMSO-d6, TMS, δ p.p.m.) 197.41, 196.40 (>C═O), 158.3, 156.8, 145.44 (>C═C<), 135.4, 135.3, 129.35, 115.73 (ArC), 31.18, 26.24 (CH3).

Refinement

All H atoms were placed in the idealized positions with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2—1.5 Ueq(C, N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
View of (I) showing intermolecular and intramolecular hydrogen bonding, as thin lines.

Crystal data

C15H15N5O4SF(000) = 752
Mr = 361.38Dx = 1.437 Mg m3
Monoclinic, P21/nMelting point: 508 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.354 (3) ÅCell parameters from 489 reflections
b = 5.7875 (13) Åθ = 2.5–27.5°
c = 25.974 (6) ŵ = 0.23 mm1
β = 101.877 (4)°T = 293 K
V = 1670.3 (7) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer3999 independent reflections
Radiation source: fine-focus sealed tube3164 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 0.3 pixels mm-1θmax = 28.2°, θmin = 1.6°
ω scansh = −14→14
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2005)k = −7→7
Tmin = 0.947, Tmax = 0.957l = −33→34
17935 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0735P)2 + 0.3686P] where P = (Fo2 + 2Fc2)/3
3999 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.63840 (13)0.4007 (3)0.17280 (6)0.0382 (3)
C20.65017 (14)0.2375 (3)0.21231 (6)0.0423 (4)
H20.68610.09580.20850.051*
C30.60841 (14)0.2856 (3)0.25745 (6)0.0442 (4)
H30.61720.17750.28450.053*
C40.55332 (13)0.4960 (3)0.26228 (6)0.0403 (3)
C50.54124 (15)0.6595 (3)0.22244 (7)0.0441 (4)
H50.50360.79980.22580.053*
C60.58527 (14)0.6128 (3)0.17784 (6)0.0435 (4)
H60.57930.72290.15130.052*
C70.41088 (16)0.7698 (3)0.35557 (7)0.0508 (4)
C80.32001 (18)0.9556 (4)0.35144 (8)0.0640 (5)
C90.2914 (2)1.0962 (4)0.30216 (10)0.0776 (6)
H9A0.22781.02300.27750.116*
H9B0.36171.10780.28710.116*
H9C0.26631.24800.31020.116*
C100.46123 (17)0.6545 (4)0.40679 (7)0.0588 (5)
C110.4767 (3)0.7965 (5)0.45552 (9)0.0890 (8)
H11A0.51220.70370.48530.134*
H11B0.39960.85190.45990.134*
H11C0.52820.92550.45280.134*
C120.48295 (14)0.2255 (3)0.05575 (6)0.0410 (3)
C130.31325 (16)0.1234 (3)−0.00211 (7)0.0558 (5)
H130.25840.1438−0.03370.067*
C140.29513 (18)−0.0519 (4)0.03058 (9)0.0672 (5)
H140.2297−0.15130.02180.081*
C150.37720 (18)−0.0752 (4)0.07679 (9)0.0645 (5)
H150.3662−0.19290.09970.077*
N10.58083 (12)0.3715 (2)0.06677 (5)0.0448 (3)
H10.58160.48700.04600.054*
N20.51240 (12)0.5382 (3)0.30859 (5)0.0473 (3)
H2A0.53360.44830.33530.057*
N30.44158 (12)0.7152 (3)0.31136 (5)0.0474 (3)
N40.40737 (12)0.2669 (2)0.00980 (5)0.0447 (3)
N50.47232 (14)0.0633 (3)0.09050 (6)0.0543 (4)
O10.77449 (10)0.5273 (3)0.10851 (5)0.0599 (3)
O20.74016 (12)0.1133 (2)0.11958 (5)0.0593 (3)
O30.49670 (15)0.4579 (3)0.40757 (6)0.0857 (5)
O40.26722 (17)0.9867 (4)0.38702 (7)0.1059 (6)
S10.69587 (3)0.34360 (8)0.116167 (15)0.04382 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0377 (7)0.0417 (8)0.0330 (7)0.0005 (6)0.0023 (6)−0.0020 (6)
C20.0458 (8)0.0380 (8)0.0418 (8)0.0078 (6)0.0060 (7)−0.0003 (6)
C30.0475 (8)0.0447 (8)0.0393 (8)0.0065 (7)0.0064 (7)0.0082 (6)
C40.0375 (7)0.0457 (8)0.0361 (7)−0.0001 (6)0.0037 (6)−0.0044 (6)
C50.0471 (8)0.0370 (8)0.0473 (9)0.0071 (7)0.0076 (7)−0.0012 (7)
C60.0494 (8)0.0409 (8)0.0381 (8)0.0041 (7)0.0043 (7)0.0051 (6)
C70.0483 (8)0.0587 (10)0.0456 (9)0.0016 (8)0.0098 (7)−0.0085 (8)
C80.0610 (11)0.0676 (12)0.0638 (12)0.0124 (10)0.0139 (9)−0.0124 (10)
C90.0716 (13)0.0735 (14)0.0858 (16)0.0217 (11)0.0114 (12)0.0035 (12)
C100.0551 (10)0.0769 (13)0.0471 (10)0.0054 (9)0.0167 (8)−0.0013 (9)
C110.0990 (17)0.118 (2)0.0458 (11)0.0011 (16)0.0061 (11)−0.0156 (12)
C120.0447 (8)0.0441 (8)0.0336 (7)−0.0011 (7)0.0066 (6)−0.0013 (6)
C130.0510 (9)0.0650 (11)0.0470 (9)−0.0096 (9)−0.0002 (7)−0.0036 (8)
C140.0586 (11)0.0666 (12)0.0724 (13)−0.0220 (10)0.0041 (9)0.0041 (10)
C150.0647 (11)0.0609 (11)0.0665 (12)−0.0138 (10)0.0104 (10)0.0163 (10)
N10.0479 (7)0.0494 (8)0.0336 (6)−0.0079 (6)−0.0002 (5)0.0049 (6)
N20.0508 (7)0.0542 (8)0.0367 (7)0.0081 (6)0.0085 (6)0.0001 (6)
N30.0422 (7)0.0553 (8)0.0431 (7)0.0034 (6)0.0052 (6)−0.0083 (6)
N40.0469 (7)0.0509 (8)0.0343 (6)−0.0053 (6)0.0038 (5)−0.0001 (6)
N50.0582 (8)0.0566 (9)0.0457 (8)−0.0083 (7)0.0054 (6)0.0123 (7)
O10.0471 (6)0.0832 (9)0.0491 (7)−0.0162 (6)0.0089 (5)−0.0029 (6)
O20.0637 (7)0.0686 (8)0.0433 (6)0.0224 (7)0.0057 (5)−0.0072 (6)
O30.1122 (12)0.0941 (11)0.0564 (8)0.0341 (10)0.0303 (8)0.0152 (8)
O40.1151 (12)0.1252 (15)0.0895 (12)0.0543 (12)0.0496 (10)−0.0011 (11)
S10.04035 (19)0.0554 (2)0.03392 (18)0.00152 (17)0.00343 (15)−0.00326 (16)

Geometric parameters (Å, °)

C1—C21.380 (2)C10—C111.489 (3)
C1—C61.386 (2)C11—H11A0.9600
C1—S11.7590 (15)C11—H11B0.9600
C2—C31.381 (2)C11—H11C0.9600
C2—H20.9300C12—N51.325 (2)
C3—C41.386 (2)C12—N41.340 (2)
C3—H30.9300C12—N11.378 (2)
C4—C51.388 (2)C13—N41.339 (2)
C4—N21.397 (2)C13—C141.366 (3)
C5—C61.380 (2)C13—H130.9300
C5—H50.9300C14—C151.366 (3)
C6—H60.9300C14—H140.9300
C7—N31.306 (2)C15—N51.333 (2)
C7—C81.478 (3)C15—H150.9300
C7—C101.493 (3)N1—S11.6396 (13)
C8—O41.214 (2)N1—H10.8600
C8—C91.495 (3)N2—N31.3136 (19)
C9—H9A0.9600N2—H2A0.8600
C9—H9B0.9600O1—S11.4284 (13)
C9—H9C0.9600O2—S11.4210 (13)
C10—O31.206 (2)
C2—C1—C6120.88 (14)C10—C11—H11A109.5
C2—C1—S1119.82 (12)C10—C11—H11B109.5
C6—C1—S1119.27 (12)H11A—C11—H11B109.5
C1—C2—C3119.71 (15)C10—C11—H11C109.5
C1—C2—H2120.1H11A—C11—H11C109.5
C3—C2—H2120.1H11B—C11—H11C109.5
C2—C3—C4119.62 (15)N5—C12—N4127.00 (15)
C2—C3—H3120.2N5—C12—N1118.39 (14)
C4—C3—H3120.2N4—C12—N1114.61 (14)
C3—C4—C5120.56 (15)N4—C13—C14122.19 (17)
C3—C4—N2117.87 (14)N4—C13—H13118.9
C5—C4—N2121.56 (14)C14—C13—H13118.9
C6—C5—C4119.70 (15)C13—C14—C15117.17 (18)
C6—C5—H5120.2C13—C14—H14121.4
C4—C5—H5120.2C15—C14—H14121.4
C5—C6—C1119.51 (15)N5—C15—C14122.95 (18)
C5—C6—H6120.2N5—C15—H15118.5
C1—C6—H6120.2C14—C15—H15118.5
N3—C7—C8114.89 (17)C12—N1—S1125.49 (11)
N3—C7—C10123.56 (16)C12—N1—H1117.3
C8—C7—C10121.55 (16)S1—N1—H1117.3
O4—C8—C7119.93 (18)N3—N2—C4119.95 (14)
O4—C8—C9121.11 (18)N3—N2—H2A120.0
C7—C8—C9118.91 (18)C4—N2—H2A120.0
C8—C9—H9A109.5C7—N3—N2120.95 (15)
C8—C9—H9B109.5C13—N4—C12115.42 (15)
H9A—C9—H9B109.5C12—N5—C15115.25 (16)
C8—C9—H9C109.5O2—S1—O1118.93 (9)
H9A—C9—H9C109.5O2—S1—N1110.86 (6)
H9B—C9—H9C109.5O1—S1—N1103.75 (6)
O3—C10—C11121.73 (19)O2—S1—C1108.15 (6)
O3—C10—C7120.14 (16)O1—S1—C1109.07 (6)
C11—C10—C7117.9 (2)N1—S1—C1105.24 (7)
C6—C1—C2—C30.1 (2)N4—C12—N1—S1−172.23 (12)
S1—C1—C2—C3177.95 (12)C3—C4—N2—N3−168.07 (14)
C1—C2—C3—C41.0 (2)C5—C4—N2—N312.8 (2)
C2—C3—C4—C5−0.8 (2)C8—C7—N3—N2−173.28 (15)
C2—C3—C4—N2−179.93 (14)C10—C7—N3—N26.1 (3)
C3—C4—C5—C6−0.5 (2)C4—N2—N3—C7−173.92 (15)
N2—C4—C5—C6178.57 (14)C14—C13—N4—C120.5 (3)
C4—C5—C6—C11.6 (2)N5—C12—N4—C13−1.8 (3)
C2—C1—C6—C5−1.4 (2)N1—C12—N4—C13178.52 (15)
S1—C1—C6—C5−179.29 (12)N4—C12—N5—C151.9 (3)
N3—C7—C8—O4164.74 (17)N1—C12—N5—C15−178.47 (16)
C10—C7—C8—O4−14.6 (3)C14—C15—N5—C12−0.6 (3)
N3—C7—C8—C9−12.8 (3)C12—N1—S1—O248.04 (14)
C10—C7—C8—C9167.8 (2)C12—N1—S1—O1176.80 (12)
N3—C7—C10—O3−27.4 (3)C12—N1—S1—C1−68.66 (15)
C8—C7—C10—O3151.92 (17)C2—C1—S1—O24.63 (13)
N3—C7—C10—C11146.9 (2)C6—C1—S1—O2−177.48 (11)
C8—C7—C10—C11−33.8 (3)C2—C1—S1—O1−126.05 (12)
N4—C13—C14—C150.5 (3)C6—C1—S1—O151.84 (13)
C13—C14—C15—N5−0.4 (3)C2—C1—S1—N1123.16 (13)
N5—C12—N1—S18.0 (2)C6—C1—S1—N1−58.95 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.012.654 (2)131
C15—H15···O4i0.932.463.262 (3)144

Symmetry codes: (i) −x+1/2, y−3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2450).

References

  • Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett.14, 217–223. [PubMed]
  • Badr, E. E. (2008). J. Dispersion Sci. Technol.29, 1143–1149.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gale, G. A., Kirtikara, K., Pittayakhajonwut, P., Sivichai, S., Thebtaranonth, Y., Thongpanchang, C. & Vichai, V. (2007). Pharmacol. Ther.115, 307–351. [PubMed]
  • Goyal, R. N. & Bhargava, S. (1989). Curr. Sci. (India), 58, 287–290.
  • Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol.48, 47–50. [PubMed]
  • Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem.19, 517–520. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev.23, 535–558. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography