PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m647.
Published online 2009 May 14. doi:  10.1107/S1600536809017188
PMCID: PMC2969757

Aqua­(propane­dioato-κ2 O 1,O 3)[2-(1H-pyrazol-1-yl-κN 2)-1,10-phenanthroline-κ2 N,N′]nickel(II) trihydrate

Abstract

In the title mononuclear complex, [Ni(C3H2O4)(C15H10N4)(H2O)]·3H2O, the metal center is coordinated in a distorted NiN3O3 geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the components into a two-dimensional network. In addition, there are weak π–π stacking inter­actions between symmetry-related phenanthroline rings, with a centroid–centroid distance of 3.6253 (17) Å.

Related literature

For a related NiII structure with 1,10-phenanthroline, see: Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m647-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H2O4)(C15H10N4)(H2O)]·3H2O
  • M r = 479.09
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m647-efi1.jpg
  • a = 7.8066 (14) Å
  • b = 11.639 (2) Å
  • c = 12.159 (2) Å
  • α = 109.234 (2)°
  • β = 103.493 (2)°
  • γ = 90.601 (2)°
  • V = 1009.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.02 mm−1
  • T = 298 K
  • 0.31 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.744, T max = 0.863
  • 5558 measured reflections
  • 3887 independent reflections
  • 3414 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.06
  • 3887 reflections
  • 280 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017188/lh2813sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017188/lh2813Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Metal complexes containing derivatives of 1,10-phenanthroline as ligands play a pivotal role in the area of modern coordination chemistry. The interest in this area has caused us to synthesize the title complex, and here we report its crystal structure, (I), Fig. 1.

The coordination bond lengths and associated angles (Table 1) indicate that the NiII ion assumes a distorted octahedral geometry. All non-hydrogen atoms of the ligand 2-(1H-pyrazol-1-yl)-1,10-phenanthroline define a plane within 0.0368 Å with a maximum deviation of -0.0854 (19) Å for atom N4. In the crystal structure, intermolecular O—H···O hydrogen bonds link the components of the structure into a two-dimensional network (see Fig. 2 and Table 2). In addition, there are weak π–π stacking interactions with Cg1···Cg2i = 3.6253 (17) Å and Cg1···Cg2iperp = 3.411 Å; α is 1.41° [symmetry code: (i) -x, -y, -z; Cg1 and Cg2 are the centroids of C1/C15–C18/N4 ring and C1/C11–C15 ring, respectively; Cg1···Cg2perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between the Cg1 ring plane and the Cg2 ring plane].

Experimental

A 5 ml H2O solution of hydrated nickel perchlorate (0.1606 g, 0.439 mmol) was added to an ethanol solution containing 2-(1H-pyrazol-1-yl)1,10-phenanthroline (0.1025 g, 0.416 mmol) and the solution was stirred for a few minutes. A 5 ml H2O solution of sodium propanedioate (0.0714 g, 0.482 mmol) was then added dropwise into the above solution. The solution was stirred for another a few minutes. Blue single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

H atoms of water molecules were located in a difference Fourier map and refined as riding in their as-found positions, with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions, and refined as riding, with C—H = 0.97 Å for methylene and C—H = 0.93 Å for other H atoms, Uiso(H) = 1.2eq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure with hydrogen bonds drawn as dashed lines.

Crystal data

[Ni(C3H2O4)(C15H10N4)(H2O)]·3H2OZ = 2
Mr = 479.09F(000) = 496
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8066 (14) ÅCell parameters from 2439 reflections
b = 11.639 (2) Åθ = 2.7–26.4°
c = 12.159 (2) ŵ = 1.02 mm1
α = 109.234 (2)°T = 298 K
β = 103.493 (2)°Block, blue
γ = 90.601 (2)°0.31 × 0.21 × 0.15 mm
V = 1009.8 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer3887 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.744, Tmax = 0.863k = −10→14
5558 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1787P] where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.2105 (3)−0.0069 (3)0.0485 (2)0.0402 (6)
C20.5533 (3)0.2194 (2)0.3192 (2)0.0317 (5)
C30.5634 (4)0.3565 (2)0.3449 (3)0.0481 (7)
H3A0.60040.39750.43130.058*
H3B0.65420.37830.31080.058*
C40.3933 (3)0.4043 (2)0.2967 (3)0.0391 (6)
C50.4542 (4)0.2600 (3)0.6200 (2)0.0501 (7)
H50.50370.34030.64560.060*
C60.4961 (4)0.1811 (3)0.6853 (3)0.0585 (8)
H60.57710.19830.75940.070*
C70.3961 (4)0.0755 (3)0.6196 (3)0.0485 (7)
H70.39340.00530.63990.058*
C80.1738 (3)0.0109 (2)0.4191 (2)0.0349 (5)
C90.1191 (4)−0.1082 (3)0.4083 (3)0.0464 (7)
H90.1665−0.14050.46810.056*
C10−0.0063 (4)−0.1753 (3)0.3072 (3)0.0500 (7)
H10−0.0437−0.25490.29770.060*
C11−0.0800 (4)−0.1258 (2)0.2169 (3)0.0423 (6)
C12−0.0145 (3)−0.0073 (2)0.2364 (2)0.0334 (5)
C13−0.2146 (4)−0.1856 (3)0.1088 (3)0.0513 (8)
H13−0.2603−0.26500.09320.062*
C14−0.2756 (4)−0.1290 (3)0.0300 (3)0.0501 (7)
H14−0.3633−0.1704−0.03910.060*
C15−0.0762 (3)0.0535 (2)0.1524 (2)0.0321 (5)
C16−0.2689 (4)0.0593 (3)−0.0293 (2)0.0490 (7)
H16−0.35800.0242−0.09940.059*
C17−0.1951 (4)0.1745 (3)−0.0018 (2)0.0506 (7)
H17−0.23450.2190−0.05230.061*
C18−0.0589 (4)0.2261 (3)0.1032 (2)0.0411 (6)
H18−0.00850.30470.12020.049*
N10.3355 (3)0.2062 (2)0.51739 (19)0.0395 (5)
N20.2992 (3)0.0911 (2)0.51724 (19)0.0366 (5)
N30.1093 (3)0.05894 (19)0.33639 (18)0.0317 (4)
N40.0004 (3)0.16792 (19)0.17875 (18)0.0325 (5)
Ni10.19360 (4)0.22721 (3)0.34854 (3)0.02967 (12)
O10.4043 (2)0.15843 (15)0.28425 (15)0.0354 (4)
O20.6966 (2)0.17407 (18)0.3347 (2)0.0496 (5)
O30.2619 (2)0.38952 (16)0.33705 (18)0.0437 (5)
O40.3907 (3)0.4573 (2)0.2239 (2)0.0593 (6)
O5−0.0012 (2)0.31123 (18)0.42578 (17)0.0474 (5)
H2−0.09740.26330.38750.071*
H10.00360.34630.49700.071*
O60.9811 (4)0.5352 (2)0.3413 (2)0.0834 (8)
H121.08380.50980.32690.125*
H110.91070.51810.28210.125*
O70.1756 (4)0.5519 (3)0.0576 (3)0.0948 (9)
H80.21840.50350.10040.142*
H150.24430.53500.01450.142*
O80.6999 (4)0.5114 (3)0.1500 (3)0.0967 (10)
H40.68940.43110.10630.145*
H30.58690.51760.15410.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0324 (14)0.0451 (15)0.0345 (13)0.0010 (11)0.0083 (11)0.0025 (12)
C20.0300 (13)0.0359 (13)0.0310 (12)0.0031 (10)0.0078 (10)0.0139 (10)
C30.0311 (14)0.0379 (15)0.075 (2)−0.0006 (11)0.0046 (13)0.0257 (15)
C40.0322 (14)0.0281 (13)0.0527 (16)−0.0026 (10)0.0022 (12)0.0142 (12)
C50.0474 (17)0.0535 (18)0.0400 (15)−0.0024 (14)−0.0011 (13)0.0122 (14)
C60.0524 (19)0.078 (2)0.0394 (16)0.0021 (17)−0.0043 (14)0.0244 (16)
C70.0488 (17)0.0619 (19)0.0444 (15)0.0125 (15)0.0096 (13)0.0319 (15)
C80.0347 (14)0.0368 (13)0.0377 (13)0.0047 (11)0.0115 (11)0.0169 (11)
C90.0527 (18)0.0428 (16)0.0541 (17)0.0055 (13)0.0154 (14)0.0289 (14)
C100.0561 (19)0.0337 (15)0.0650 (19)−0.0046 (13)0.0204 (15)0.0197 (14)
C110.0445 (16)0.0366 (14)0.0471 (15)−0.0010 (12)0.0181 (13)0.0116 (12)
C120.0281 (13)0.0340 (13)0.0376 (13)−0.0006 (10)0.0106 (10)0.0100 (11)
C130.0506 (18)0.0386 (15)0.0545 (18)−0.0165 (13)0.0142 (14)0.0026 (14)
C140.0416 (17)0.0502 (17)0.0418 (15)−0.0104 (13)0.0044 (13)−0.0015 (13)
C150.0296 (13)0.0354 (13)0.0305 (12)0.0027 (10)0.0102 (10)0.0083 (10)
C160.0425 (16)0.0588 (19)0.0332 (14)0.0082 (14)0.0000 (12)0.0057 (13)
C170.0570 (19)0.0522 (18)0.0369 (15)0.0138 (15)0.0006 (13)0.0154 (13)
C180.0436 (15)0.0408 (15)0.0385 (14)0.0085 (12)0.0076 (12)0.0148 (12)
N10.0396 (13)0.0398 (12)0.0373 (12)0.0003 (10)0.0046 (10)0.0145 (10)
N20.0352 (12)0.0426 (12)0.0371 (11)0.0056 (10)0.0079 (9)0.0208 (10)
N30.0294 (11)0.0324 (11)0.0347 (11)0.0007 (8)0.0081 (8)0.0133 (9)
N40.0302 (11)0.0343 (11)0.0326 (11)0.0033 (9)0.0070 (8)0.0114 (9)
Ni10.02559 (19)0.02943 (19)0.03366 (19)0.00035 (12)0.00542 (13)0.01179 (14)
O10.0286 (9)0.0319 (9)0.0421 (10)0.0002 (7)0.0076 (7)0.0090 (8)
O20.0311 (10)0.0451 (11)0.0792 (14)0.0093 (8)0.0159 (10)0.0282 (10)
O30.0369 (11)0.0334 (10)0.0658 (13)0.0051 (8)0.0160 (9)0.0210 (9)
O40.0512 (13)0.0661 (14)0.0783 (15)0.0069 (11)0.0143 (11)0.0488 (13)
O50.0315 (10)0.0577 (12)0.0436 (10)0.0017 (9)0.0104 (8)0.0043 (9)
O60.0684 (17)0.0799 (19)0.0820 (17)0.0267 (14)0.0127 (14)0.0053 (15)
O70.090 (2)0.123 (3)0.097 (2)0.0304 (19)0.0232 (17)0.070 (2)
O80.074 (2)0.128 (3)0.105 (2)0.0108 (18)0.0367 (17)0.051 (2)

Geometric parameters (Å, °)

C1—C151.404 (4)C12—N31.351 (3)
C1—C161.408 (4)C12—C151.425 (4)
C1—C141.432 (4)C13—C141.336 (5)
C2—O21.243 (3)C13—H130.9300
C2—O11.261 (3)C14—H140.9300
C2—C31.519 (4)C15—N41.358 (3)
C3—C41.511 (4)C16—C171.356 (4)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.403 (4)
C4—O41.231 (3)C17—H170.9300
C4—O31.269 (3)C18—N41.317 (3)
C5—N11.320 (4)C18—H180.9300
C5—C61.395 (4)N1—N21.367 (3)
C5—H50.9300N1—Ni12.186 (2)
C6—C71.341 (5)N3—Ni12.007 (2)
C6—H60.9300N4—Ni12.145 (2)
C7—N21.366 (3)Ni1—O32.0149 (18)
C7—H70.9300Ni1—O12.0427 (17)
C8—N31.311 (3)Ni1—O52.0603 (18)
C8—N21.398 (3)O5—H20.8653
C8—C91.401 (4)O5—H10.8184
C9—C101.367 (4)O6—H120.8934
C9—H90.9300O6—H110.7604
C10—C111.414 (4)O7—H80.9033
C10—H100.9300O7—H150.8159
C11—C121.390 (4)O8—H40.9009
C11—C131.433 (4)O8—H30.8976
C15—C1—C16116.2 (3)N4—C15—C12117.1 (2)
C15—C1—C14118.1 (3)C1—C15—C12119.0 (2)
C16—C1—C14125.7 (3)C17—C16—C1119.9 (3)
O2—C2—O1123.8 (2)C17—C16—H16120.1
O2—C2—C3116.5 (2)C1—C16—H16120.1
O1—C2—C3119.7 (2)C16—C17—C18119.6 (3)
C4—C3—C2115.2 (2)C16—C17—H17120.2
C4—C3—H3A108.5C18—C17—H17120.2
C2—C3—H3A108.5N4—C18—C17122.8 (3)
C4—C3—H3B108.5N4—C18—H18118.6
C2—C3—H3B108.5C17—C18—H18118.6
H3A—C3—H3B107.5C5—N1—N2104.6 (2)
O4—C4—O3124.0 (3)C5—N1—Ni1144.3 (2)
O4—C4—C3119.0 (3)N2—N1—Ni1110.94 (15)
O3—C4—C3117.0 (2)C7—N2—N1111.0 (2)
N1—C5—C6111.4 (3)C7—N2—C8130.7 (2)
N1—C5—H5124.3N1—N2—C8118.3 (2)
C6—C5—H5124.3C8—N3—C12119.8 (2)
C7—C6—C5106.2 (3)C8—N3—Ni1122.53 (18)
C7—C6—H6126.9C12—N3—Ni1117.64 (16)
C5—C6—H6126.9C18—N4—C15117.5 (2)
C6—C7—N2106.8 (3)C18—N4—Ni1130.64 (19)
C6—C7—H7126.6C15—N4—Ni1111.70 (16)
N2—C7—H7126.6N3—Ni1—O3172.30 (8)
N3—C8—N2112.9 (2)N3—Ni1—O189.69 (7)
N3—C8—C9122.4 (2)O3—Ni1—O189.36 (7)
N2—C8—C9124.7 (2)N3—Ni1—O594.60 (8)
C10—C9—C8118.0 (3)O3—Ni1—O586.90 (8)
C10—C9—H9121.0O1—Ni1—O5174.18 (7)
C8—C9—H9121.0N3—Ni1—N478.21 (8)
C9—C10—C11121.1 (3)O3—Ni1—N494.31 (8)
C9—C10—H10119.5O1—Ni1—N496.83 (7)
C11—C10—H10119.5O5—Ni1—N487.90 (8)
C12—C11—C10116.0 (3)N3—Ni1—N175.03 (8)
C12—C11—C13117.6 (3)O3—Ni1—N1112.52 (8)
C10—C11—C13126.4 (3)O1—Ni1—N185.91 (8)
N3—C12—C11122.7 (2)O5—Ni1—N191.40 (8)
N3—C12—C15115.3 (2)N4—Ni1—N1153.09 (8)
C11—C12—C15122.0 (2)C2—O1—Ni1121.73 (15)
C14—C13—C11121.1 (3)C4—O3—Ni1121.25 (16)
C14—C13—H13119.4Ni1—O5—H2105.6
C11—C13—H13119.4Ni1—O5—H1128.8
C13—C14—C1122.2 (3)H2—O5—H1113.1
C13—C14—H14118.9H12—O6—H11109.3
C1—C14—H14118.9H8—O7—H1595.2
N4—C15—C1124.0 (2)H4—O8—H397.9
O2—C2—C3—C4165.4 (2)C15—C12—N3—C8179.8 (2)
O1—C2—C3—C4−14.8 (4)C11—C12—N3—Ni1178.57 (19)
C2—C3—C4—O4−120.0 (3)C15—C12—N3—Ni1−2.4 (3)
C2—C3—C4—O361.9 (3)C17—C18—N4—C15−0.4 (4)
N1—C5—C6—C7−0.8 (4)C17—C18—N4—Ni1−176.1 (2)
C5—C6—C7—N20.8 (4)C1—C15—N4—C181.7 (3)
N3—C8—C9—C100.0 (4)C12—C15—N4—C18−178.3 (2)
N2—C8—C9—C10179.4 (3)C1—C15—N4—Ni1178.24 (19)
C8—C9—C10—C11−0.7 (4)C12—C15—N4—Ni1−1.8 (3)
C9—C10—C11—C121.4 (4)C8—N3—Ni1—O181.8 (2)
C9—C10—C11—C13−178.4 (3)C12—N3—Ni1—O1−95.92 (18)
C10—C11—C12—N3−1.4 (4)C8—N3—Ni1—O5−94.3 (2)
C13—C11—C12—N3178.3 (2)C12—N3—Ni1—O588.01 (18)
C10—C11—C12—C15179.6 (2)C8—N3—Ni1—N4178.8 (2)
C13—C11—C12—C15−0.6 (4)C12—N3—Ni1—N41.12 (17)
C12—C11—C13—C14−0.4 (4)C8—N3—Ni1—N1−4.07 (19)
C10—C11—C13—C14179.4 (3)C12—N3—Ni1—N1178.23 (19)
C11—C13—C14—C10.2 (5)C18—N4—Ni1—N3176.3 (2)
C15—C1—C14—C131.0 (4)C15—N4—Ni1—N30.39 (15)
C16—C1—C14—C13−179.3 (3)C18—N4—Ni1—O3−5.6 (2)
C16—C1—C15—N4−1.7 (4)C15—N4—Ni1—O3178.52 (15)
C14—C1—C15—N4178.1 (2)C18—N4—Ni1—O1−95.4 (2)
C16—C1—C15—C12178.3 (2)C15—N4—Ni1—O188.65 (16)
C14—C1—C15—C12−1.9 (4)C18—N4—Ni1—O581.2 (2)
N3—C12—C15—N42.8 (3)C15—N4—Ni1—O5−94.75 (16)
C11—C12—C15—N4−178.2 (2)C18—N4—Ni1—N1170.1 (2)
N3—C12—C15—C1−177.2 (2)C15—N4—Ni1—N1−5.8 (3)
C11—C12—C15—C11.8 (4)C5—N1—Ni1—N3178.2 (4)
C15—C1—C16—C170.3 (4)N2—N1—Ni1—N34.34 (15)
C14—C1—C16—C17−179.5 (3)C5—N1—Ni1—O3−0.2 (4)
C1—C16—C17—C181.0 (4)N2—N1—Ni1—O3−174.04 (14)
C16—C17—C18—N4−1.0 (5)C5—N1—Ni1—O187.4 (3)
C6—C5—N1—N20.5 (3)N2—N1—Ni1—O1−86.44 (16)
C6—C5—N1—Ni1−173.6 (2)C5—N1—Ni1—O5−87.4 (3)
C6—C7—N2—N1−0.5 (3)N2—N1—Ni1—O598.73 (16)
C6—C7—N2—C8−179.5 (3)C5—N1—Ni1—N4−175.5 (3)
C5—N1—N2—C7−0.1 (3)N2—N1—Ni1—N410.6 (3)
Ni1—N1—N2—C7176.26 (17)O2—C2—O1—Ni1143.1 (2)
C5—N1—N2—C8179.1 (2)C3—C2—O1—Ni1−36.7 (3)
Ni1—N1—N2—C8−4.6 (3)N3—Ni1—O1—C2−145.91 (18)
N3—C8—N2—C7−179.5 (2)O3—Ni1—O1—C241.73 (19)
C9—C8—N2—C71.1 (4)N4—Ni1—O1—C2136.00 (18)
N3—C8—N2—N11.6 (3)N1—Ni1—O1—C2−70.90 (18)
C9—C8—N2—N1−177.9 (2)O4—C4—O3—Ni1135.1 (2)
N2—C8—N3—C12−179.5 (2)C3—C4—O3—Ni1−46.9 (3)
C9—C8—N3—C120.0 (4)O1—Ni1—O3—C41.6 (2)
N2—C8—N3—Ni12.8 (3)O5—Ni1—O3—C4177.2 (2)
C9—C8—N3—Ni1−177.69 (19)N4—Ni1—O3—C4−95.2 (2)
C11—C12—N3—C80.8 (4)N1—Ni1—O3—C486.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H2···O2i0.871.772.622 (3)170
O7—H15···O8ii0.822.042.791 (4)152
O5—H1···O6iii0.821.972.773 (3)167
O6—H12···O3iv0.892.002.785 (3)147
O8—H3···O40.902.132.895 (4)143
O7—H8···O40.901.992.836 (4)155
O6—H11···O80.761.992.736 (4)165

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2813).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography