PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1334.
Published online 2009 May 20. doi:  10.1107/S1600536809018236
PMCID: PMC2969756

4-Chloro-N-m-tolyl­benzamide

Abstract

In the title compound, C14H12ClNO, the dihedral angle between the two aromatic rings is 11.29 (15)°. The crystal packing is stabilized by N—H(...)O hydrogen bonds linking the mol­ecules into chains running along the c axis.

Related literature

For the biological activity of N-substituted benzamides and benzanilide derivatives, see Calderone et al. (2006 [triangle]); Beccalli et al. (2005 [triangle]); Yoo et al. (2005 [triangle]); Vega-Noverola et al. (1989 [triangle]); Olsson et al. (2002 [triangle]); Lindgren et al. (2001 [triangle]); Zhichkin et al. (2007 [triangle]). For related structures see: Saeed et al. (2008 [triangle]); Chopra & Guru Row (2008 [triangle]); Donnelly et al. (2008 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o1334-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO
  • M r = 245.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1334-efi1.jpg
  • a = 13.9721 (14) Å
  • b = 10.1922 (6) Å
  • c = 9.0154 (8) Å
  • β = 105.415 (7)°
  • V = 1237.67 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 173 K
  • 0.26 × 0.24 × 0.23 mm

Data collection

  • Stoe IPDSII two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2009 [triangle]; Blessing, 1995 [triangle]) T min = 0.928, T max = 0.936
  • 9469 measured reflections
  • 2193 independent reflections
  • 1787 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.178
  • S = 1.04
  • 2193 reflections
  • 160 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018236/ya2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018236/ya2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. N-Substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-Substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). o-Aryloxylation of N-substituted benzamides induced by the copper(II)/trimethylamine N-oxide system has been studied. N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005). As part of our work on the structure of benzanilides and related compounds, we report here the structure of the title 4-chlorobenzamide derivative, I, Fig 1.

The dihedral angle between the two aromatic rings is 11.29 (15) °. The crystal packing is stabilized by N—H···O hydrogen bonds linking the molecules to chains running along the c axis.

Experimental

4-Chlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 3-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (81%) as colourless blocks. Anal. calcd. for C14H12ClNO1: C 68.44, H 4.92, N 5.70%; found: C 68.39, H 4.90, N 5.67%

Refinement

H atoms were located in a difference map but those bonded to C were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] and C—H(aromatic) = 0.95Å or CH(methyl) = 0.98 Å, respectively. The H atom bonded to N was refined isotropically, N-H 0.88 (3) Å.

Figures

Fig. 1.
Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Crystal data

C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10353 reflections
a = 13.9721 (14) Åθ = 2.6–27.8°
b = 10.1922 (6) ŵ = 0.29 mm1
c = 9.0154 (8) ÅT = 173 K
β = 105.415 (7)°Block, colourless
V = 1237.67 (18) Å30.26 × 0.24 × 0.23 mm
Z = 4

Data collection

Stoe IPDSII two-circle diffractometer2193 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
graphiteRint = 0.074
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)h = −16→16
Tmin = 0.928, Tmax = 0.936k = −12→12
9469 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178w = 1/[σ2(Fo2) + (0.1231P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2193 reflectionsΔρmax = 0.51 e Å3
160 parametersΔρmin = −0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.86033 (5)0.92615 (6)0.74007 (9)0.0588 (3)
O10.41731 (13)0.85570 (16)0.23364 (18)0.0439 (5)
N10.38823 (16)0.72470 (18)0.4215 (2)0.0393 (5)
H10.408 (2)0.702 (2)0.519 (3)0.041 (7)*
C10.44505 (17)0.80750 (19)0.3639 (3)0.0366 (5)
C110.54665 (18)0.83650 (19)0.4646 (3)0.0371 (6)
C120.59229 (19)0.7638 (2)0.5951 (3)0.0435 (6)
H120.55740.69300.62530.052*
C130.68742 (19)0.7929 (2)0.6814 (3)0.0456 (6)
H130.71720.74340.77110.055*
C140.73903 (18)0.8948 (2)0.6362 (3)0.0422 (6)
C150.69544 (19)0.9691 (2)0.5060 (3)0.0413 (6)
H150.73111.03870.47530.050*
C160.6000 (2)0.94034 (19)0.4222 (3)0.0398 (6)
H160.56970.99170.33430.048*
C210.29378 (19)0.6714 (2)0.3444 (3)0.0388 (6)
C220.22613 (19)0.7341 (2)0.2241 (3)0.0404 (6)
H220.24260.81660.18840.049*
C230.13421 (19)0.6770 (2)0.1555 (3)0.0429 (6)
C240.1115 (2)0.5552 (2)0.2080 (3)0.0468 (6)
H240.04990.51420.16050.056*
C250.1784 (2)0.4941 (2)0.3291 (3)0.0488 (6)
H250.16180.41180.36510.059*
C260.2693 (2)0.5508 (2)0.3988 (3)0.0452 (6)
H260.31450.50840.48260.054*
C270.0604 (2)0.7461 (3)0.0252 (3)0.0561 (7)
H27A0.07200.7202−0.07320.084*
H27B0.06860.84130.03830.084*
H27C−0.00730.72160.02640.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0465 (5)0.0523 (5)0.0671 (6)−0.0050 (3)−0.0031 (4)−0.0004 (3)
O10.0528 (11)0.0441 (9)0.0317 (9)−0.0007 (7)0.0059 (8)0.0023 (7)
N10.0477 (12)0.0352 (9)0.0296 (11)−0.0020 (8)0.0009 (9)0.0012 (8)
C10.0479 (14)0.0276 (10)0.0321 (12)0.0042 (9)0.0067 (10)−0.0024 (8)
C110.0481 (14)0.0277 (10)0.0340 (12)0.0040 (9)0.0081 (11)−0.0020 (8)
C120.0481 (15)0.0363 (11)0.0433 (14)−0.0019 (10)0.0070 (12)0.0059 (10)
C130.0485 (15)0.0391 (12)0.0435 (14)0.0040 (11)0.0021 (12)0.0106 (10)
C140.0441 (14)0.0334 (11)0.0458 (14)0.0025 (10)0.0062 (12)−0.0051 (10)
C150.0522 (14)0.0306 (11)0.0409 (13)−0.0014 (10)0.0119 (12)−0.0010 (9)
C160.0539 (15)0.0283 (10)0.0345 (13)0.0020 (9)0.0070 (11)−0.0005 (9)
C210.0468 (13)0.0322 (11)0.0343 (12)−0.0028 (9)0.0053 (11)−0.0059 (9)
C220.0487 (14)0.0343 (11)0.0358 (13)−0.0011 (9)0.0069 (11)−0.0032 (9)
C230.0471 (14)0.0448 (13)0.0350 (13)−0.0002 (10)0.0080 (11)−0.0066 (10)
C240.0490 (15)0.0410 (12)0.0478 (15)−0.0060 (10)0.0081 (12)−0.0116 (10)
C250.0566 (15)0.0357 (12)0.0523 (15)−0.0047 (11)0.0111 (13)−0.0041 (10)
C260.0546 (16)0.0336 (11)0.0432 (14)−0.0011 (10)0.0058 (12)−0.0013 (9)
C270.0510 (17)0.0587 (15)0.0500 (16)−0.0056 (12)−0.0017 (13)0.0034 (12)

Geometric parameters (Å, °)

Cl1—C141.734 (3)C16—H160.9500
O1—C11.236 (3)C21—C221.390 (3)
N1—C11.353 (3)C21—C261.398 (3)
N1—C211.426 (3)C22—C231.396 (3)
N1—H10.88 (3)C22—H220.9500
C1—C111.497 (3)C23—C241.394 (3)
C11—C121.393 (3)C23—C271.515 (4)
C11—C161.404 (3)C24—C251.383 (4)
C12—C131.382 (4)C24—H240.9500
C12—H120.9500C25—C261.385 (4)
C13—C141.386 (4)C25—H250.9500
C13—H130.9500C26—H260.9500
C14—C151.393 (3)C27—H27A0.9800
C15—C161.378 (4)C27—H27B0.9800
C15—H150.9500C27—H27C0.9800
C1—N1—C21127.7 (2)C22—C21—C26119.9 (2)
C1—N1—H1119.2 (18)C22—C21—N1123.7 (2)
C21—N1—H1112.9 (18)C26—C21—N1116.4 (2)
O1—C1—N1123.0 (2)C21—C22—C23120.6 (2)
O1—C1—C11120.3 (2)C21—C22—H22119.7
N1—C1—C11116.7 (2)C23—C22—H22119.7
C12—C11—C16118.3 (2)C24—C23—C22119.1 (2)
C12—C11—C1123.7 (2)C24—C23—C27120.5 (2)
C16—C11—C1118.0 (2)C22—C23—C27120.4 (2)
C13—C12—C11121.1 (2)C25—C24—C23120.1 (2)
C13—C12—H12119.4C25—C24—H24119.9
C11—C12—H12119.4C23—C24—H24119.9
C12—C13—C14119.5 (2)C24—C25—C26121.1 (2)
C12—C13—H13120.2C24—C25—H25119.5
C14—C13—H13120.2C26—C25—H25119.5
C13—C14—C15120.6 (2)C25—C26—C21119.2 (2)
C13—C14—Cl1119.28 (19)C25—C26—H26120.4
C15—C14—Cl1120.04 (19)C21—C26—H26120.4
C16—C15—C14119.3 (2)C23—C27—H27A109.5
C16—C15—H15120.4C23—C27—H27B109.5
C14—C15—H15120.4H27A—C27—H27B109.5
C15—C16—C11121.2 (2)C23—C27—H27C109.5
C15—C16—H16119.4H27A—C27—H27C109.5
C11—C16—H16119.4H27B—C27—H27C109.5
C21—N1—C1—O15.0 (4)C12—C11—C16—C150.8 (3)
C21—N1—C1—C11−173.24 (19)C1—C11—C16—C15−177.3 (2)
O1—C1—C11—C12−164.2 (2)C1—N1—C21—C22−28.5 (4)
N1—C1—C11—C1214.2 (3)C1—N1—C21—C26153.4 (2)
O1—C1—C11—C1613.8 (3)C26—C21—C22—C23−0.9 (4)
N1—C1—C11—C16−167.84 (19)N1—C21—C22—C23−179.0 (2)
C16—C11—C12—C130.2 (4)C21—C22—C23—C24−0.7 (4)
C1—C11—C12—C13178.2 (2)C21—C22—C23—C27179.5 (2)
C11—C12—C13—C14−1.0 (4)C22—C23—C24—C251.6 (4)
C12—C13—C14—C150.9 (4)C27—C23—C24—C25−178.6 (3)
C12—C13—C14—Cl1−177.17 (19)C23—C24—C25—C26−1.0 (4)
C13—C14—C15—C160.1 (4)C24—C25—C26—C21−0.6 (4)
Cl1—C14—C15—C16178.14 (18)C22—C21—C26—C251.5 (4)
C14—C15—C16—C11−1.0 (4)N1—C21—C26—C25179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (3)1.99 (3)2.854 (3)166 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2096).

References

  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 761–767. [PubMed]
  • Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.
  • Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [PubMed]
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [PubMed]
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
  • Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem.70, 6941–6943. [PubMed]
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography