PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m695–m696.
Published online 2009 May 29. doi:  10.1107/S1600536809019503
PMCID: PMC2969754

catena-Poly[[[bis­(1,10-phenanthroline-κ2 N,N′)manganese(II)]-μ-9,10-dioxo­anthracene-1,5-disulfonato-κ2 O 1:O 5] tetra­hydrate]

Abstract

The title complex, {[Mn(C14H6O8S2)(C12H8N2)2]·4H2O}n, exhibits a chain-like polymeric structure with 9,10-dioxo­anthracene-1,5-disulfonate anions bridging MnII atoms in a bis-monodentate mode. The unique MnII atom is located on a crystallographic centre of inversion. Four N atoms from two chelating 1,10-phenanthroline ligands and two sulfonate O atoms from two symmetry-related 9,10-dioxoanthracene-1,5-disulfonate anions give rise to a slightly distorted octa­hedral coordination environment around the MnII centre. The centroid of the central ring of the anthraquinone ligand represents another crystallographic centre of inversion. In the crystal structure, inter­ligand π–π stacking [centroid-to-centroid distances 3.532 (1) and 3.497 (3) Å] and inter­molecular O—H(...)O hydrogen-bonding inter­actions assemble the chains into a three-dimensional supra­molecular network.

Related literature

For applications of organosulfonate-based metal complexes, see: Côté & Shimizu (2003 [triangle]); Cai (2004 [triangle]). For synthetic procedure, see: Cui et al. (2007 [triangle]); Dai et al. (2006 [triangle]); Zhao et al. (2007 [triangle]). For related structures, see: Cai et al. (2001 [triangle]); Du et al. (2006 [triangle]); Gándara et al. (2006 [triangle]); Wu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m695-scheme1.jpg

Experimental

Crystal data

  • [Mn(C14H6O8S2)(C12H8N2)2]·4H2O
  • M r = 853.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m695-efi1.jpg
  • a = 8.8882 (9) Å
  • b = 9.578 (1) Å
  • c = 11.016 (1) Å
  • α = 105.962 (1)°
  • β = 103.050 (1)°
  • γ = 93.120 (1)°
  • V = 871.5 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 294 K
  • 0.32 × 0.28 × 0.26 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.838, T max = 0.865
  • 4767 measured reflections
  • 3042 independent reflections
  • 2751 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.086
  • S = 1.05
  • 3042 reflections
  • 259 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019503/im2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019503/im2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Youth Fund of Tianjin Normal University (HKZ).

supplementary crystallographic information

Comment

Recently, organosulfonate-based metal complexes have drawn intense interest due to their adjustable coordination ability and interesting applications as functional materials [Cai, 2004; Côté & Shimizu, 2003; Zhao et al., 2007]. By introducing popular nitrogen-containing functional organic molecules as coligands, a series of sulfonate-based complexes have successfully been synthesized, which exhibit diverse structures ranging from discrete zero-dimensional (0D) to infinite high-dimensional structures [Cai et al., 2001; Gándara et al., 2006; Du et al., 2006]. As part of our continuous investigation on the coordination chemistry of mixed-ligand systems [Dai et al., 2006; Cui et al., 2007; Wu et al., 2007], we herein report the crystal structure of a MnII complex with 1,10-phenanthroline and 9,10-dioxoanthracene-1,5-disulfonate ligands (I).

The local coordination environment of MnII atom in I is shown in Fig. 1. The unique MnII atom is situated on a crystallodraphic centre of inversion and is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two sulfonate O atoms from two independent 9,10-dioxoanthracene-1,5-disulfonate anions, exhibiting a slightly distorted octahedral coordination mode. The centrosymmetric 9,10-dioxoanthracene-1,5-disulfonate anion adopts a bis-monodentate mode, linking the adjacent MnII atoms into a one-dimensional infinite chain along the c-axis (Fig. 2). Two interligand π–π stacking interactions between the intrachain 1,10-phenanthroline and anthraquinone ring as well as between the two interchain 1,10-phenanthroline rings were observed (Fig. 1 and 2), which stabilize the one-dimensional chain and further extend the chains into a two-dimensional plane. The centroid–centroid distance and the dihedral angle between the 1,10-phenanthroline and anthraquinone ring measures to 3.532 (1) Å and 2.704 (4)°. In contrast, the π-stacking parameters between the interchain 1,10-phenanthroline rings are 3.497 (3) Å and 0.0°, respectively.

Additionally, the adjacent two-dimensional planes are extended into a three-dimensional supramolecular network by fourfold O—H···O hydrogen-bonding interactions between the sulfonate O atoms and the lattice water molecules (Table 1 and Fig. 2).

Experimental

A mixture of disodium 9,10-dioxoanthracene-1,5-disulfonate (164.8 mg, 0.4 mmol), Mn(OAc)2.4H2O (98.0 mg, 0.4 mmol), 1,10-phenanthroline (79.3 mg, 0.4 mmol), and H2O (20 ml) was sealed in a 23 ml teflon lined stainless steel vessel. The vessel was heated to 413 K for 2 d under autogenous pressure and then cooled to room temperature at a rate of 2.4 K/h. Yellow block-shaped crystals suitable for X-ray analysis were obtained in a 41% yield. Analysis calculated for C19H15Mn0.50N2O6S: C 53.46, H 3.54, N 6.56%; found: C 53.56, H 3.50, N 6.70%.

Refinement

H atoms were located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å and O—H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2Ueq(C,O)].

Figures

Fig. 1.
The local coordination environment of MnII in I) drawn with 30% probability displacement ellipsoids. H atoms were omitted for clarity. The short dashed lines indicate interligand π-π stacking interactions [Symmetry code: (A) 1 - x, 1 - ...
Fig. 2.
The three-dimensional supramolecular network of (I) produced by hydrogen-bonding and π–π stacking interactions.

Crystal data

[Mn(C14H6O8S2)(C12H8N2)2]·4H2OZ = 1
Mr = 853.74F(000) = 439
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8882 (9) ÅCell parameters from 3691 reflections
b = 9.578 (1) Åθ = 2.2–27.9°
c = 11.016 (1) ŵ = 0.57 mm1
α = 105.962 (1)°T = 294 K
β = 103.050 (1)°Block, yellow
γ = 93.120 (1)°0.32 × 0.28 × 0.26 mm
V = 871.5 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3042 independent reflections
Radiation source: fine-focus sealed tube2751 reflections with I > 2σ(I)
graphiteRint = 0.011
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.838, Tmax = 0.865k = −11→8
4767 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3551P] where P = (Fo2 + 2Fc2)/3
3042 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.50000.50000.02553 (13)
S10.34382 (5)0.24029 (5)0.21379 (4)0.03110 (14)
O10.34939 (15)0.38120 (14)0.30894 (12)0.0344 (3)
O20.19137 (17)0.18841 (18)0.12816 (15)0.0506 (4)
O30.40672 (19)0.13426 (17)0.27693 (17)0.0532 (4)
O40.2494 (2)0.4691 (2)0.0881 (2)0.0710 (6)
N10.59998 (18)0.65125 (17)0.40181 (15)0.0323 (3)
N20.71074 (17)0.40323 (16)0.44201 (15)0.0294 (3)
C10.3690 (2)0.4857 (2)0.05604 (19)0.0388 (5)
C20.4839 (2)0.3789 (2)0.05903 (17)0.0307 (4)
C30.4760 (2)0.2649 (2)0.11671 (17)0.0306 (4)
C40.5807 (2)0.1633 (2)0.1047 (2)0.0389 (5)
H40.57560.08840.14290.047*
C50.6932 (3)0.1712 (2)0.0368 (2)0.0448 (5)
H50.75970.09950.02640.054*
C60.7061 (2)0.2844 (2)−0.0148 (2)0.0425 (5)
H60.78380.2916−0.05760.051*
C70.6032 (2)0.3891 (2)−0.00353 (18)0.0338 (4)
C80.7230 (2)0.60542 (19)0.35365 (17)0.0284 (4)
C90.5491 (3)0.7727 (2)0.3818 (2)0.0454 (5)
H90.46520.80500.41420.055*
C100.6133 (3)0.8547 (2)0.3155 (2)0.0486 (5)
H100.57270.93910.30410.058*
C110.7358 (3)0.8100 (2)0.2677 (2)0.0448 (5)
H110.78060.86390.22350.054*
C120.7950 (2)0.6821 (2)0.28506 (19)0.0351 (4)
C130.9234 (2)0.6277 (2)0.2369 (2)0.0436 (5)
H130.97020.67790.19110.052*
C140.9780 (2)0.5056 (2)0.2565 (2)0.0435 (5)
H141.06160.47240.22390.052*
C150.9090 (2)0.4258 (2)0.32685 (19)0.0345 (4)
C160.9640 (2)0.2989 (2)0.3505 (2)0.0419 (5)
H161.04800.26340.32000.050*
C170.8938 (2)0.2278 (2)0.4183 (2)0.0431 (5)
H170.92900.14360.43480.052*
C180.7684 (2)0.2839 (2)0.4623 (2)0.0383 (5)
H180.72170.23490.50900.046*
C190.7815 (2)0.47471 (19)0.37489 (17)0.0281 (4)
O5W0.9995 (2)0.9273 (2)0.12804 (18)0.0708 (5)
H5A0.95200.86940.05390.106*
H5B1.04691.00730.12890.106*
O6W0.7867 (3)0.0448 (3)0.6265 (2)0.0998 (8)
H6A0.86580.08440.68920.150*
H6B0.7305−0.02550.63400.150*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0264 (2)0.0268 (2)0.0277 (2)0.00381 (15)0.01252 (15)0.01015 (15)
S10.0332 (3)0.0287 (2)0.0334 (3)−0.00064 (18)0.0137 (2)0.00874 (19)
O10.0354 (7)0.0363 (7)0.0301 (7)0.0033 (5)0.0105 (6)0.0061 (5)
O20.0369 (8)0.0589 (10)0.0456 (9)−0.0125 (7)0.0110 (7)0.0018 (7)
O30.0627 (10)0.0451 (9)0.0749 (11)0.0172 (7)0.0383 (9)0.0358 (8)
O40.0518 (10)0.1099 (15)0.1036 (15)0.0435 (10)0.0535 (10)0.0824 (13)
N10.0336 (8)0.0312 (8)0.0380 (9)0.0052 (6)0.0160 (7)0.0138 (7)
N20.0286 (8)0.0310 (8)0.0330 (8)0.0038 (6)0.0120 (6)0.0128 (6)
C10.0334 (10)0.0589 (13)0.0369 (11)0.0142 (9)0.0180 (8)0.0259 (10)
C20.0282 (9)0.0396 (10)0.0251 (9)0.0035 (8)0.0082 (7)0.0095 (8)
C30.0305 (9)0.0329 (9)0.0269 (9)0.0003 (7)0.0098 (7)0.0046 (7)
C40.0430 (11)0.0329 (10)0.0435 (11)0.0057 (8)0.0177 (9)0.0100 (9)
C50.0461 (12)0.0413 (11)0.0546 (13)0.0159 (9)0.0245 (10)0.0148 (10)
C60.0395 (11)0.0510 (12)0.0467 (12)0.0136 (9)0.0250 (10)0.0171 (10)
C70.0304 (9)0.0446 (11)0.0308 (10)0.0083 (8)0.0123 (8)0.0137 (8)
C80.0267 (9)0.0315 (9)0.0269 (9)−0.0024 (7)0.0092 (7)0.0074 (7)
C90.0479 (12)0.0411 (11)0.0634 (14)0.0145 (9)0.0302 (11)0.0265 (10)
C100.0555 (14)0.0404 (11)0.0653 (15)0.0115 (10)0.0261 (12)0.0304 (11)
C110.0519 (13)0.0416 (11)0.0509 (12)−0.0002 (10)0.0215 (10)0.0240 (10)
C120.0357 (10)0.0366 (10)0.0346 (10)−0.0039 (8)0.0121 (8)0.0120 (8)
C130.0407 (11)0.0512 (12)0.0470 (12)−0.0032 (9)0.0247 (10)0.0180 (10)
C140.0362 (11)0.0507 (12)0.0494 (12)0.0034 (9)0.0246 (10)0.0132 (10)
C150.0284 (9)0.0385 (10)0.0359 (10)0.0016 (8)0.0132 (8)0.0062 (8)
C160.0315 (10)0.0453 (12)0.0501 (12)0.0103 (9)0.0180 (9)0.0089 (10)
C170.0405 (11)0.0395 (11)0.0550 (13)0.0138 (9)0.0162 (10)0.0182 (10)
C180.0366 (10)0.0396 (11)0.0482 (12)0.0095 (8)0.0182 (9)0.0211 (9)
C190.0248 (9)0.0314 (9)0.0261 (9)−0.0012 (7)0.0075 (7)0.0055 (7)
O5W0.0725 (12)0.0829 (13)0.0555 (10)−0.0218 (10)0.0079 (9)0.0305 (10)
O6W0.1002 (17)0.1057 (18)0.0955 (16)−0.0265 (14)−0.0050 (13)0.0642 (14)

Geometric parameters (Å, °)

Mn1—O1i2.1820 (12)C7—C1ii1.499 (3)
Mn1—O12.1820 (12)C8—C121.412 (3)
Mn1—N22.2758 (15)C8—C191.438 (3)
Mn1—N2i2.2758 (15)C9—C101.390 (3)
Mn1—N1i2.2834 (15)C9—H90.9300
Mn1—N12.2834 (15)C10—C111.353 (3)
S1—O21.4368 (15)C10—H100.9300
S1—O31.4499 (16)C11—C121.403 (3)
S1—O11.4539 (13)C11—H110.9300
S1—C31.8042 (18)C12—C131.429 (3)
O4—C11.210 (2)C13—C141.343 (3)
N1—C91.326 (3)C13—H130.9300
N1—C81.362 (2)C14—C151.432 (3)
N2—C181.331 (2)C14—H140.9300
N2—C191.361 (2)C15—C161.402 (3)
C1—C21.485 (3)C15—C191.406 (3)
C1—C7ii1.499 (3)C16—C171.362 (3)
C2—C71.401 (2)C16—H160.9300
C2—C31.412 (3)C17—C181.390 (3)
C3—C41.383 (3)C17—H170.9300
C4—C51.388 (3)C18—H180.9300
C4—H40.9300O5W—H5A0.8502
C5—C61.366 (3)O5W—H5B0.8502
C5—H50.9300O6W—H6A0.8503
C6—C71.393 (3)O6W—H6B0.8500
C6—H60.9300
O1i—Mn1—O1180.0C5—C6—H6119.9
O1i—Mn1—N288.86 (5)C7—C6—H6119.9
O1—Mn1—N291.14 (5)C6—C7—C2120.69 (18)
O1i—Mn1—N2i91.14 (5)C6—C7—C1ii116.82 (17)
O1—Mn1—N2i88.86 (5)C2—C7—C1ii122.43 (17)
N2—Mn1—N2i180.00 (7)N1—C8—C12122.37 (17)
O1i—Mn1—N1i87.76 (5)N1—C8—C19118.36 (15)
O1—Mn1—N1i92.24 (5)C12—C8—C19119.27 (16)
N2—Mn1—N1i106.48 (5)N1—C9—C10124.2 (2)
N2i—Mn1—N1i73.52 (5)N1—C9—H9117.9
O1i—Mn1—N192.24 (5)C10—C9—H9117.9
O1—Mn1—N187.76 (5)C11—C10—C9119.0 (2)
N2—Mn1—N173.52 (5)C11—C10—H10120.5
N2i—Mn1—N1106.48 (5)C9—C10—H10120.5
N1i—Mn1—N1179.999 (2)C10—C11—C12119.77 (19)
O2—S1—O3112.74 (10)C10—C11—H11120.1
O2—S1—O1112.54 (9)C12—C11—H11120.1
O3—S1—O1111.06 (9)C11—C12—C8117.56 (18)
O2—S1—C3108.28 (9)C11—C12—C13122.97 (18)
O3—S1—C3104.66 (9)C8—C12—C13119.46 (19)
O1—S1—C3107.04 (8)C14—C13—C12121.33 (19)
S1—O1—Mn1135.36 (8)C14—C13—H13119.3
C9—N1—C8117.14 (16)C12—C13—H13119.3
C9—N1—Mn1128.11 (13)C13—C14—C15120.80 (19)
C8—N1—Mn1114.68 (12)C13—C14—H14119.6
C18—N2—C19117.16 (16)C15—C14—H14119.6
C18—N2—Mn1127.72 (12)C16—C15—C19117.87 (18)
C19—N2—Mn1115.07 (12)C16—C15—C14122.40 (18)
O4—C1—C2121.34 (19)C19—C15—C14119.73 (19)
O4—C1—C7ii119.27 (19)C17—C16—C15119.72 (18)
C2—C1—C7ii119.26 (16)C17—C16—H16120.1
C7—C2—C3118.43 (17)C15—C16—H16120.1
C7—C2—C1117.76 (17)C16—C17—C18118.60 (19)
C3—C2—C1123.77 (16)C16—C17—H17120.7
C4—C3—C2119.42 (17)C18—C17—H17120.7
C4—C3—S1114.57 (15)N2—C18—C17124.23 (18)
C2—C3—S1125.96 (14)N2—C18—H18117.9
C3—C4—C5121.22 (19)C17—C18—H18117.9
C3—C4—H4119.4N2—C19—C15122.41 (17)
C5—C4—H4119.4N2—C19—C8118.19 (15)
C6—C5—C4119.86 (19)C15—C19—C8119.40 (16)
C6—C5—H5120.1H5A—O5W—H5B117.0
C4—C5—H5120.1H6A—O6W—H6B117.0
C5—C6—C7120.25 (18)
O2—S1—O1—Mn1157.33 (11)C4—C5—C6—C7−2.3 (3)
O3—S1—O1—Mn129.85 (14)C5—C6—C7—C2−0.9 (3)
C3—S1—O1—Mn1−83.83 (12)C5—C6—C7—C1ii176.6 (2)
O1i—Mn1—O1—S1163 (13)C3—C2—C7—C63.5 (3)
N2—Mn1—O1—S133.35 (11)C1—C2—C7—C6−174.07 (19)
N2i—Mn1—O1—S1−146.65 (11)C3—C2—C7—C1ii−173.82 (17)
N1i—Mn1—O1—S1−73.20 (11)C1—C2—C7—C1ii8.6 (3)
N1—Mn1—O1—S1106.81 (11)C9—N1—C8—C120.0 (3)
O1i—Mn1—N1—C9−91.40 (18)Mn1—N1—C8—C12177.27 (14)
O1—Mn1—N1—C988.60 (18)C9—N1—C8—C19179.47 (18)
N2—Mn1—N1—C9−179.54 (19)Mn1—N1—C8—C19−3.2 (2)
N2i—Mn1—N1—C90.45 (19)C8—N1—C9—C100.0 (3)
N1i—Mn1—N1—C9−37 (8)Mn1—N1—C9—C10−176.90 (18)
O1i—Mn1—N1—C891.68 (13)N1—C9—C10—C11−0.1 (4)
O1—Mn1—N1—C8−88.32 (13)C9—C10—C11—C120.4 (4)
N2—Mn1—N1—C83.53 (12)C10—C11—C12—C8−0.4 (3)
N2i—Mn1—N1—C8−176.47 (12)C10—C11—C12—C13179.7 (2)
N1i—Mn1—N1—C8146 (8)N1—C8—C12—C110.2 (3)
O1i—Mn1—N2—C1886.18 (16)C19—C8—C12—C11−179.24 (17)
O1—Mn1—N2—C18−93.82 (16)N1—C8—C12—C13−179.86 (18)
N2i—Mn1—N2—C1836 (17)C19—C8—C12—C130.7 (3)
N1i—Mn1—N2—C18−1.15 (17)C11—C12—C13—C14179.3 (2)
N1—Mn1—N2—C18178.85 (17)C8—C12—C13—C14−0.6 (3)
O1i—Mn1—N2—C19−96.18 (12)C12—C13—C14—C15−0.2 (3)
O1—Mn1—N2—C1983.82 (12)C13—C14—C15—C16−179.2 (2)
N2i—Mn1—N2—C19−146 (17)C13—C14—C15—C190.8 (3)
N1i—Mn1—N2—C19176.49 (12)C19—C15—C16—C17−0.1 (3)
N1—Mn1—N2—C19−3.51 (12)C14—C15—C16—C17179.9 (2)
O4—C1—C2—C7167.4 (2)C15—C16—C17—C180.1 (3)
C7ii—C1—C2—C7−8.3 (3)C19—N2—C18—C17−0.8 (3)
O4—C1—C2—C3−10.0 (3)Mn1—N2—C18—C17176.82 (16)
C7ii—C1—C2—C3174.24 (17)C16—C17—C18—N20.4 (3)
C7—C2—C3—C4−3.0 (3)C18—N2—C19—C150.7 (3)
C1—C2—C3—C4174.46 (18)Mn1—N2—C19—C15−177.20 (13)
C7—C2—C3—S1174.29 (14)C18—N2—C19—C8−178.94 (17)
C1—C2—C3—S1−8.3 (3)Mn1—N2—C19—C83.2 (2)
O2—S1—C3—C4−108.81 (16)C16—C15—C19—N2−0.3 (3)
O3—S1—C3—C411.67 (17)C14—C15—C19—N2179.75 (18)
O1—S1—C3—C4129.62 (14)C16—C15—C19—C8179.36 (17)
O2—S1—C3—C273.81 (18)C14—C15—C19—C8−0.6 (3)
O3—S1—C3—C2−165.72 (16)N1—C8—C19—N20.1 (2)
O1—S1—C3—C2−47.77 (18)C12—C8—C19—N2179.57 (16)
C2—C3—C4—C5−0.2 (3)N1—C8—C19—C15−179.58 (16)
S1—C3—C4—C5−177.72 (16)C12—C8—C19—C15−0.1 (3)
C3—C4—C5—C62.8 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5W—H5A···O2ii0.852.032.826 (2)156
O5W—H5B···O2iii0.852.102.948 (2)172
O6W—H6A···O5Wiv0.852.132.868 (3)145
O6W—H6B···O3v0.852.122.922 (3)157

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x+1, y+1, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2118).

References

  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, J. W. (2004). Coord. Chem. Rev.248, 1061–1083.
  • Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.
  • Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev.245, 49–64.
  • Cui, Z. N., Guo, J. H. & Yang, E. C. (2007). Chin. J. Struct. Chem.26, 717–720.
  • Dai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096–m2098.
  • Du, Z. Y., Xu, H. B. & Mao, J. G. (2006). Inorg. Chem.45, 9780–9788. [PubMed]
  • Gándara, F., Revilla, C. F., Snejko, N., Puebla, E. G., Iglesias, M. & Monge, M. A. (2006). Inorg. Chem.45, 9680–9687. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, M.-J., Dai, P.-X., Wang, X.-G., Yang, E.-C. & Zhao, X.-J. (2007). Acta Cryst. E63, m2413.
  • Zhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902–906.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography