PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1438.
Published online 2009 May 29. doi:  10.1107/S1600536809019667
PMCID: PMC2969750

2,4-Dichloro­pyrimidine

Abstract

The mol­ecule of the title compound, C4H2Cl2N2, is almost planar [maximum deviation = 0.013 (3) Å for a Cl atom]. In the crystal structure, inter­molecular C—H(...)N inter­actions link the mol­ecules into chains.

Related literature

For a related structure, see: Bhasin et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1438-scheme1.jpg

Experimental

Crystal data

  • C4H2Cl2N2
  • M r = 148.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1438-efi1.jpg
  • a = 7.5090 (15) Å
  • b = 10.776 (2) Å
  • c = 7.1980 (14) Å
  • β = 92.92 (3)°
  • V = 581.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.755, T max = 0.826
  • 1223 measured reflections
  • 1139 independent reflections
  • 733 reflections with I > 2σ(I)
  • R int = 0.084
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.180
  • S = 1.01
  • 1139 reflections
  • 73 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019667/hk2698sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019667/hk2698Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of pyrimidine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (N1/N2/C1-C4) is, of course, planar. Atoms Cl1 and Cl2 are 0.012 (3) and 0.013 (3) Å away from the ring plane, respectively. So, the molecule is planar.

In the crystal structure, intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, uracil (100 g, 0.82 mol) was dissolved in phosphorous oxychloride (400 ml) in a two-necked round-bottom flask (500 ml) equipped with a condenser. The solution was refluxed with stirring for 3.5 h at 383 K. The residual phosphorous oxychloride was removed in vacuo at 323 K, and the remaining oil was poured into ice (50 g) followed by extraction with chloroform (3 × 50 ml). The combined organic extract was washed with dilute sodium carbonate solution and dried over anhydrous sodium sulfate. The title compound was obtained by evaporation of solvent (Bhasin et al., 2009). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C4H2Cl2N2F(000) = 296
Mr = 148.98Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.5090 (15) Åθ = 10–13°
b = 10.776 (2) ŵ = 0.99 mm1
c = 7.1980 (14) ÅT = 294 K
β = 92.92 (3)°Block, colorless
V = 581.7 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer733 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
graphiteθmax = 26.0°, θmin = 2.7°
ω/2θ scansh = −9→0
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.755, Tmax = 0.826l = −8→8
1223 measured reflections3 standard reflections every 120 min
1139 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.07P)2 + 1.45P] where P = (Fo2 + 2Fc2)/3
1139 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.5768 (2)0.63809 (14)0.0975 (2)0.0762 (6)
Cl21.1679 (2)0.83010 (16)0.3510 (3)0.0862 (7)
N10.6273 (6)0.8744 (4)0.0912 (7)0.0612 (12)
N20.8628 (5)0.7492 (4)0.2211 (6)0.0555 (11)
C10.8975 (7)0.9681 (5)0.2072 (8)0.0652 (15)
H1B0.96651.03840.23210.078*
C20.7272 (8)0.9751 (5)0.1252 (9)0.0689 (16)
H2B0.68081.05260.09270.083*
C30.7027 (6)0.7699 (5)0.1403 (7)0.0485 (12)
C40.9577 (7)0.8520 (5)0.2490 (8)0.0562 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0693 (9)0.0670 (10)0.0897 (12)−0.0184 (7)−0.0222 (8)−0.0065 (8)
Cl20.0581 (9)0.0731 (11)0.1233 (15)−0.0074 (7)−0.0370 (9)−0.0038 (10)
N10.055 (3)0.059 (3)0.068 (3)0.013 (2)−0.009 (2)0.002 (2)
N20.052 (2)0.042 (2)0.071 (3)−0.0014 (18)−0.017 (2)−0.002 (2)
C10.070 (4)0.042 (3)0.081 (4)0.000 (2)−0.013 (3)−0.007 (3)
C20.079 (4)0.047 (3)0.081 (4)0.006 (3)0.000 (3)0.007 (3)
C30.045 (2)0.056 (3)0.044 (3)0.005 (2)−0.006 (2)−0.007 (2)
C40.051 (3)0.052 (3)0.064 (3)−0.002 (2)−0.008 (3)−0.005 (3)

Geometric parameters (Å, °)

Cl1—C31.725 (5)N2—C41.327 (6)
Cl2—C41.723 (5)C1—C21.383 (8)
N1—C21.334 (7)C1—C41.358 (7)
N1—C31.302 (6)C1—H1B0.9300
N2—C31.327 (6)C2—H2B0.9300
C3—N1—C2114.9 (5)C1—C2—H2B118.9
C4—N2—C3113.2 (4)N1—C3—N2129.5 (5)
C4—C1—C2115.8 (5)N1—C3—Cl1115.9 (4)
C4—C1—H1B122.1N2—C3—Cl1114.6 (4)
C2—C1—H1B122.1N2—C4—C1124.4 (5)
N1—C2—C1122.2 (5)N2—C4—Cl2115.0 (4)
N1—C2—H2B118.9C1—C4—Cl2120.5 (4)
C3—N1—C2—C1−0.2 (9)C4—N2—C3—Cl1178.8 (4)
C4—C1—C2—N10.7 (10)C3—N2—C4—C12.5 (9)
C2—N1—C3—N21.0 (9)C3—N2—C4—Cl2−179.2 (4)
C2—N1—C3—Cl1−179.9 (4)C2—C1—C4—N2−2.0 (10)
C4—N2—C3—N1−2.0 (9)C2—C1—C4—Cl2179.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.932.623.548 (7)174

Symmetry codes: (i) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2698).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bhasin, K. K., Arora, E., Kaur, K., Kang, S. K., Gobel, M., Klapoetke, T. M. & Mehta, S. K. (2009). Tetrahedron, 65, 247–252.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography