PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1210.
Published online 2009 May 7. doi:  10.1107/S1600536809015621
PMCID: PMC2969747

N-(2-Hydroxy­ethyl)-1,8-naphthalimide

Abstract

In the mol­ecule of the title compound, C14H11NO3, the naphthalimide ring system is nearly planar (r.m.s. deviation 0.0139 Å). In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers forming R 2 2(14) ring motifs. π–π contacts between the naphthalimide rings [centroid–centroid distances = 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Prezhdo et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1210-scheme1.jpg

Experimental

Crystal data

  • C14H11NO3
  • M r = 241.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1210-efi1.jpg
  • a = 7.5480 (15) Å
  • b = 8.8300 (18) Å
  • c = 10.101 (2) Å
  • α = 96.760 (19)°
  • β = 109.94 (3)°
  • γ = 114.60 (3)°
  • V = 548.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.970, T max = 0.990
  • 2159 measured reflections
  • 1995 independent reflections
  • 1330 reflections with I > 2σ(I)
  • R int = 0.023
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.208
  • S = 1.00
  • 1995 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015621/hk2674sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015621/hk2674Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

As part of our ongoing studies on N-substituted 1,8-naphthalimides (Prezhdo et al., 2007), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14) are, of course, planar, and they are oriented at dihedral angles of A/B = 1.79 (3), A/C = 1.14 (3) and B/C = 1.00 (3) °. So, they are nearly coplanar. Intramolecular C-H···O interaction (Table 1) results in the formation of a five-membered ring D (O2/N/C2/C3/H2A), having envelope conformation, with atom H2A displaced by -0.302 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(14) ring motifs (Fig. 2) (Bernstein et al., 1996), in which they may be effective in the stabilization of the structure. The π–π contacts between the naphthalimide rings, Cg1—Cg1i, Cg1—Cg2i, Cg1—Cg3ii, Cg2—Cg3ii and Cg3—Cg3ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) 2 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å, respectively.

Experimental

For the preparation of the title compound, 1,8-naphthalic anhydride (1.98 g, 0.01 mol) and 2-aminoethanol (0.02 mol) were mixed with acetic acid (50 ml). The reaction mixture was refluxed for 8 h, and then poured into cold water. The resulting solids were filtered off. The solid products were boiled with an aqueous solution of sodium bicarbonate (10%, 50 ml) for 20 min, and the insoluble solid residues were dried in vacuo. Column chromatography on aluminium oxide with the C6H6 eluent gave light-brown solution. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield; 96%, m.p. 413 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11NO3Z = 2
Mr = 241.24F(000) = 252
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 7.5480 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8300 (18) ÅCell parameters from 25 reflections
c = 10.101 (2) Åθ = 10–13°
α = 96.760 (19)°µ = 0.10 mm1
β = 109.94 (3)°T = 294 K
γ = 114.60 (3)°Block, green
V = 548.2 (3) Å30.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (North et al., 1968)k = −10→9
Tmin = 0.970, Tmax = 0.990l = −12→11
2159 measured reflections3 standard reflections every 120 min
1995 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.208w = 1/[σ2(Fo2) + (0.1P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1995 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4860 (4)0.2063 (3)−0.0242 (2)0.0624 (7)
H1A0.47630.2711−0.07490.094*
O20.6221 (4)0.5936 (3)0.1937 (3)0.0677 (8)
O30.2875 (4)0.1029 (3)0.3070 (3)0.0729 (8)
N0.4553 (4)0.3481 (3)0.2496 (3)0.0480 (7)
C10.3020 (6)0.1341 (5)0.0027 (4)0.0599 (9)
H1B0.30520.04550.05040.072*
H1C0.17460.0767−0.09130.072*
C20.2818 (5)0.2660 (5)0.0982 (4)0.0610 (10)
H2A0.28280.35660.05220.073*
H2B0.14390.20810.10260.073*
C30.6193 (5)0.5166 (4)0.2858 (3)0.0472 (8)
C40.4392 (5)0.2495 (4)0.3487 (4)0.0509 (8)
C50.6124 (5)0.3314 (4)0.5006 (3)0.0464 (8)
C60.6103 (6)0.2394 (5)0.6016 (4)0.0601 (10)
H6A0.49750.12630.57430.072*
C70.7759 (7)0.3145 (5)0.7442 (4)0.0677 (11)
H7A0.77260.25100.81140.081*
C80.9433 (6)0.4804 (5)0.7870 (4)0.0601 (9)
H8A1.05310.52860.88260.072*
C90.9504 (5)0.5784 (4)0.6872 (3)0.0450 (7)
C100.7830 (5)0.5027 (4)0.5413 (3)0.0407 (7)
C110.7899 (5)0.5973 (4)0.4390 (3)0.0423 (7)
C120.9566 (5)0.7653 (4)0.4817 (4)0.0494 (8)
H12A0.96110.82820.41420.059*
C131.1206 (5)0.8421 (4)0.6277 (4)0.0560 (9)
H13A1.23170.95620.65620.067*
C141.1181 (5)0.7516 (5)0.7266 (4)0.0536 (9)
H14A1.22830.80410.82220.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0681 (16)0.0792 (17)0.0581 (15)0.0486 (14)0.0293 (12)0.0251 (12)
O20.0783 (17)0.0742 (17)0.0564 (15)0.0431 (14)0.0243 (13)0.0308 (13)
O30.0595 (16)0.0526 (15)0.0854 (19)0.0114 (13)0.0330 (14)0.0078 (13)
N0.0442 (15)0.0521 (15)0.0468 (15)0.0266 (13)0.0177 (12)0.0061 (12)
C10.057 (2)0.059 (2)0.053 (2)0.0252 (17)0.0200 (16)0.0039 (16)
C20.0468 (19)0.068 (2)0.055 (2)0.0298 (17)0.0112 (16)0.0000 (17)
C30.0512 (19)0.0525 (18)0.0517 (19)0.0341 (16)0.0260 (15)0.0161 (15)
C40.0480 (19)0.0451 (18)0.063 (2)0.0226 (16)0.0310 (16)0.0069 (15)
C50.0514 (18)0.0469 (17)0.0566 (19)0.0302 (15)0.0327 (16)0.0148 (15)
C60.078 (2)0.056 (2)0.075 (3)0.0383 (19)0.054 (2)0.0285 (18)
C70.095 (3)0.081 (3)0.063 (2)0.057 (2)0.049 (2)0.039 (2)
C80.073 (2)0.081 (3)0.051 (2)0.052 (2)0.0338 (18)0.0238 (18)
C90.0469 (17)0.0588 (19)0.0434 (17)0.0359 (16)0.0232 (14)0.0123 (14)
C100.0421 (16)0.0460 (16)0.0483 (17)0.0291 (14)0.0260 (14)0.0120 (13)
C110.0455 (17)0.0447 (16)0.0463 (17)0.0296 (14)0.0214 (14)0.0119 (13)
C120.0551 (19)0.0443 (17)0.062 (2)0.0293 (15)0.0328 (16)0.0171 (15)
C130.0434 (18)0.0478 (18)0.068 (2)0.0186 (15)0.0238 (17)0.0021 (17)
C140.0481 (18)0.065 (2)0.0490 (19)0.0339 (17)0.0190 (15)0.0025 (16)

Geometric parameters (Å, °)

O1—C11.403 (4)C6—C71.391 (5)
O1—H1A0.8200C6—H6A0.9300
O2—C31.216 (4)C7—C81.366 (5)
O3—C41.214 (4)C7—H7A0.9300
N—C21.470 (4)C8—C91.404 (5)
N—C31.383 (4)C8—H8A0.9300
N—C41.404 (4)C9—C101.418 (4)
C1—C21.515 (5)C9—C141.414 (5)
C1—H1B0.9700C10—C111.405 (4)
C1—H1C0.9700C11—C121.376 (4)
C2—H2A0.9700C12—C131.410 (5)
C2—H2B0.9700C12—H12A0.9300
C3—C111.476 (4)C13—C141.351 (5)
C4—C51.474 (5)C13—H13A0.9300
C5—C61.378 (5)C14—H14A0.9300
C5—C101.409 (4)
C1—O1—H1A109.5C5—C6—H6A119.8
C3—N—C4124.6 (3)C7—C6—H6A119.8
C3—N—C2118.3 (3)C8—C7—C6120.9 (3)
C4—N—C2117.1 (3)C8—C7—H7A119.6
O1—C1—C2114.2 (3)C6—C7—H7A119.6
O1—C1—H1B108.7C7—C8—C9120.4 (3)
C2—C1—H1B108.7C7—C8—H8A119.8
O1—C1—H1C108.7C9—C8—H8A119.8
C2—C1—H1C108.7C8—C9—C14122.6 (3)
H1B—C1—H1C107.6C8—C9—C10119.2 (3)
N—C2—C1113.5 (3)C14—C9—C10118.2 (3)
N—C2—H2A108.9C11—C10—C5120.9 (3)
C1—C2—H2A108.9C11—C10—C9120.0 (3)
N—C2—H2B108.9C5—C10—C9119.1 (3)
C1—C2—H2B108.9C12—C11—C10119.9 (3)
H2A—C2—H2B107.7C12—C11—C3120.0 (3)
O2—C3—N120.7 (3)C10—C11—C3120.1 (3)
O2—C3—C11121.9 (3)C11—C12—C13120.1 (3)
N—C3—C11117.4 (3)C11—C12—H12A119.9
O3—C4—N119.8 (3)C13—C12—H12A119.9
O3—C4—C5123.0 (3)C14—C13—C12120.7 (3)
N—C4—C5117.2 (3)C14—C13—H13A119.7
C6—C5—C10120.1 (3)C12—C13—H13A119.7
C6—C5—C4120.1 (3)C13—C14—C9121.1 (3)
C10—C5—C4119.8 (3)C13—C14—H14A119.4
C5—C6—C7120.4 (3)C9—C14—H14A119.4
C3—N—C2—C1103.2 (4)C4—C5—C10—C110.4 (4)
C4—N—C2—C1−78.1 (4)C6—C5—C10—C9−0.4 (4)
O1—C1—C2—N−64.6 (4)C4—C5—C10—C9−178.9 (2)
C4—N—C3—O2180.0 (3)C8—C9—C10—C11−178.6 (3)
C2—N—C3—O2−1.4 (4)C14—C9—C10—C111.9 (4)
C4—N—C3—C110.5 (4)C8—C9—C10—C50.7 (4)
C2—N—C3—C11179.1 (2)C14—C9—C10—C5−178.9 (2)
C3—N—C4—O3179.1 (3)C5—C10—C11—C12179.1 (2)
C2—N—C4—O30.5 (4)C9—C10—C11—C12−1.6 (4)
C3—N—C4—C5−1.2 (4)C5—C10—C11—C3−1.1 (4)
C2—N—C4—C5−179.9 (2)C9—C10—C11—C3178.1 (2)
O3—C4—C5—C62.0 (5)O2—C3—C11—C121.0 (4)
N—C4—C5—C6−177.7 (3)N—C3—C11—C12−179.6 (3)
O3—C4—C5—C10−179.6 (3)O2—C3—C11—C10−178.8 (3)
N—C4—C5—C100.8 (4)N—C3—C11—C100.7 (4)
C10—C5—C6—C70.1 (5)C10—C11—C12—C130.2 (4)
C4—C5—C6—C7178.5 (3)C3—C11—C12—C13−179.5 (3)
C5—C6—C7—C80.0 (5)C11—C12—C13—C140.9 (4)
C6—C7—C8—C90.2 (5)C12—C13—C14—C9−0.6 (5)
C7—C8—C9—C14178.9 (3)C8—C9—C14—C13179.7 (3)
C7—C8—C9—C10−0.6 (5)C10—C9—C14—C13−0.8 (4)
C6—C5—C10—C11178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.972.771 (4)165
C2—H2A···O20.972.312.714 (5)104

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2674).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Prezhdo, O. V., Uspenskii, B. V., Prezhdo, V. V., Boszczyk, W. & Distanov, V. B. (2007). Dyes Pigments, 72, 42–46.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography