PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m654.
Published online 2009 May 20. doi:  10.1107/S1600536809017668
PMCID: PMC2969745

Bis(μ-5-carboxyl­ato-1-carboxyl­ato­methyl-2-oxidopyridinium)-κ2 O 5:O 12 O 1:O 5-[diaqua­(phenan­throline-κ2 N,N′)manganese(II)] dihydrate

Abstract

The centrosymmetric binuclear title complex, [Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O, was obtained by the reaction of manganese chloride with 5-carb­oxy-1-carboxy­methyl-2-oxidopyridinium and 1,10-phenanthroline. The MnII atom is coordinated by two N atoms from the 1,10-phenanthroline ligand, two O atoms from two 5-carboxyl­ato-1-carboxyl­atomethyl-2-oxidopyridinium ligands and two water mol­ecules, leading to a distorted octahedral MnN2O4 environment. Inter­molecular O—H(...)O hydrogen bonds link neighbouring mol­ecules into a layer structure parallel to (001).

Related literature

For the synthesis of compounds with multicarboxyl­ate ligands and metal centers, see: He et al. (2008 [triangle]); Huang et al. (2008 [triangle]); Jiang et al. (2009 [triangle]); Tong et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m654-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O
  • M r = 968.64
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m654-efi1.jpg
  • a = 7.7726 (11) Å
  • b = 9.9519 (14) Å
  • c = 15.411 (3) Å
  • α = 98.744 (10)°
  • β = 103.553 (10)°
  • γ = 110.252 (7)°
  • V = 1051.1 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 293 K
  • 0.60 × 0.15 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.885, T max = 0.934
  • 19359 measured reflections
  • 4779 independent reflections
  • 3675 reflections with I > 2σ(I)
  • R int = 0.171

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.141
  • S = 1.00
  • 4779 reflections
  • 307 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017668/at2783sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017668/at2783Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

There is intensely research on the synthesis of compounds with multicarboxylate ligands and metal centers for their potential applications and coloful coordination methods. A large number of these compounds have been synthesized (He et al., 2008; Huang et al., 2008; Jiang et al.,2009; Tong et al., 2005). As illustrated in Fig. 1, the MnII atom is coordinated by two nitrogen atoms from one 1,10-phenanthroline molecule, two oxygen atoms from two 5-carboxyl-1-carboxymethyl-2-oxidopyridinium ligands and two wate molecules. Four coordinated atoms of N2, N3, O5 and O2A constitute the base of the octahedral, whereas O1W and O2W atoms occupy the apical position. The intermolecular hydrogen bonds play an important role in the formation of the one-dimensional chain. As shown in Fig. 2. The intermolecular O—H···O hydrogen bonds link the neibouring molecules to a one-dimensional chain.

Experimental

A mixture of 0.5 mmol 5-carboxyl-1-carboxymethyl-2-oxidopyridinium, 0.5 mmol 1,10-phenanthroline and 0.5 mmol of manganese chloride in 10 ml distilled water was stirred for 30 min at 323 K, then the reaction mixture was filtered and well shaped yellow crystals of the title compound was obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level [Symmetry code: (A) -x + 1, -y + 1, -z + 1].
Fig. 2.
A view of the one-dimensional chain of the title compound. The O—H···O interactions are depicted by dashed lines.

Crystal data

[Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2OV = 1051.1 (3) Å3
Mr = 968.64Z = 1
Triclinic, P1F(000) = 498
Hall symbol: -P 1Dx = 1.530 Mg m3
a = 7.7726 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9519 (14) Åθ = 2.8–27.5°
c = 15.411 (3) ŵ = 0.68 mm1
α = 98.744 (10)°T = 293 K
β = 103.553 (10)°Block, yellow
γ = 110.252 (7)°0.60 × 0.15 × 0.10 mm

Data collection

Bruker APEXII area-detector diffractometer4779 independent reflections
Radiation source: fine-focus sealed tube3675 reflections with I > 2σ(I)
graphiteRint = 0.171
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.885, Tmax = 0.934k = −12→12
19359 measured reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.083P)2 + 0.0025P] where P = (Fo2 + 2Fc2)/3
4779 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.81 e Å3
9 restraintsΔρmin = −0.79 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.34180 (4)0.38197 (3)0.24659 (2)0.03192 (14)
C10.8430 (3)0.9583 (2)0.60141 (17)0.0399 (5)
H1A0.73650.95750.55330.048*
H1B0.93351.06050.62840.048*
C20.7670 (3)0.89610 (18)0.67529 (14)0.0334 (4)
C31.1327 (3)0.9121 (2)0.60386 (16)0.0416 (5)
C41.2123 (3)0.8185 (2)0.56435 (17)0.0447 (5)
H41.34210.83880.59050.054*
C51.1068 (3)0.7009 (2)0.49014 (16)0.0397 (5)
H51.16400.64230.46630.048*
C60.9079 (3)0.66801 (19)0.44911 (15)0.0350 (5)
C70.8321 (3)0.75625 (19)0.48720 (15)0.0358 (5)
H70.70160.73440.46200.043*
C80.7808 (3)0.5421 (2)0.36561 (15)0.0363 (5)
C9−0.0500 (3)0.1365 (2)0.09487 (19)0.0561 (7)
H9−0.06410.09260.14330.067*
C10−0.1881 (4)0.0671 (3)0.0077 (2)0.0672 (9)
H10−0.2900−0.0226−0.00120.081*
C11−0.1736 (3)0.1298 (2)−0.06335 (19)0.0565 (7)
H11−0.26540.0839−0.12120.068*
C12−0.0184 (3)0.2654 (2)−0.04935 (16)0.0413 (5)
C130.0048 (3)0.3422 (3)−0.11964 (18)0.0506 (6)
H13−0.08210.2997−0.17890.061*
C140.1498 (3)0.4747 (3)−0.10162 (17)0.0495 (6)
H140.16070.5238−0.14810.059*
C150.2884 (3)0.5414 (2)−0.01126 (16)0.0405 (5)
C160.4418 (4)0.6812 (2)0.01077 (19)0.0509 (6)
H160.45840.7336−0.03380.061*
C170.5659 (3)0.7382 (2)0.09913 (19)0.0509 (6)
H170.66600.83120.11560.061*
C180.5416 (3)0.6564 (2)0.16410 (17)0.0429 (5)
H180.62890.69620.22340.051*
C190.2732 (3)0.46827 (18)0.05867 (14)0.0331 (4)
C200.1150 (3)0.32712 (18)0.04029 (14)0.0338 (4)
O1W0.2082 (2)0.51934 (15)0.30069 (13)0.0469 (4)
H1WA0.107 (3)0.494 (3)0.3146 (19)0.056*
H1WB0.262 (3)0.6101 (18)0.3185 (18)0.056*
O10.6879 (2)0.96382 (15)0.71523 (12)0.0473 (4)
O2W0.5101 (2)0.24567 (16)0.20164 (12)0.0439 (4)
H2WA0.612 (3)0.297 (2)0.2403 (16)0.053*
H2WB0.459 (3)0.177 (2)0.2261 (16)0.053*
O20.7879 (2)0.78107 (15)0.68951 (12)0.0440 (4)
O31.2212 (2)1.02222 (18)0.67190 (14)0.0640 (6)
O3W0.5827 (3)1.18225 (16)0.65623 (18)0.0688 (6)
H3WA0.632 (4)1.129 (3)0.680 (2)0.083*
H3WB0.471 (3)1.149 (3)0.659 (2)0.083*
O40.84928 (19)0.46805 (15)0.32338 (12)0.0449 (4)
O50.6043 (2)0.52140 (18)0.34392 (12)0.0526 (5)
N10.9381 (2)0.87521 (16)0.56051 (13)0.0361 (4)
N20.3998 (2)0.52424 (16)0.14566 (13)0.0351 (4)
N30.0999 (2)0.26257 (16)0.11052 (13)0.0390 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.03112 (19)0.02749 (17)0.0329 (2)0.00883 (12)0.00698 (15)0.00713 (12)
C10.0513 (11)0.0308 (8)0.0417 (13)0.0170 (8)0.0180 (10)0.0135 (8)
C20.0322 (9)0.0295 (8)0.0345 (12)0.0102 (7)0.0072 (8)0.0069 (7)
C30.0390 (10)0.0365 (9)0.0403 (13)0.0071 (8)0.0112 (9)0.0057 (8)
C40.0306 (9)0.0466 (10)0.0455 (14)0.0107 (8)0.0024 (9)0.0055 (9)
C50.0340 (9)0.0377 (9)0.0433 (13)0.0132 (8)0.0079 (9)0.0079 (8)
C60.0318 (9)0.0330 (8)0.0348 (12)0.0092 (7)0.0055 (8)0.0098 (8)
C70.0331 (9)0.0334 (8)0.0360 (12)0.0088 (7)0.0066 (8)0.0118 (8)
C80.0336 (9)0.0343 (8)0.0361 (12)0.0094 (7)0.0079 (8)0.0094 (8)
C90.0537 (13)0.0374 (10)0.0535 (17)−0.0012 (9)0.0010 (12)0.0158 (10)
C100.0565 (14)0.0399 (11)0.066 (2)−0.0090 (10)−0.0065 (13)0.0106 (12)
C110.0491 (12)0.0441 (11)0.0491 (17)0.0073 (9)−0.0067 (11)−0.0029 (10)
C120.0399 (10)0.0406 (9)0.0383 (13)0.0177 (8)0.0041 (9)0.0038 (8)
C130.0523 (12)0.0593 (13)0.0370 (14)0.0270 (11)0.0037 (10)0.0076 (10)
C140.0587 (13)0.0624 (13)0.0383 (14)0.0315 (11)0.0165 (11)0.0235 (11)
C150.0467 (11)0.0407 (9)0.0425 (13)0.0223 (9)0.0184 (10)0.0151 (9)
C160.0622 (14)0.0437 (11)0.0559 (16)0.0202 (10)0.0270 (12)0.0265 (10)
C170.0540 (13)0.0328 (9)0.0608 (18)0.0071 (9)0.0225 (12)0.0149 (10)
C180.0422 (10)0.0306 (8)0.0455 (15)0.0061 (8)0.0113 (10)0.0039 (8)
C190.0364 (9)0.0291 (8)0.0360 (12)0.0156 (7)0.0120 (8)0.0068 (7)
C200.0350 (9)0.0301 (8)0.0347 (12)0.0144 (7)0.0076 (8)0.0050 (7)
O1W0.0401 (8)0.0323 (6)0.0712 (13)0.0146 (6)0.0243 (8)0.0096 (7)
O10.0589 (9)0.0417 (7)0.0532 (11)0.0275 (7)0.0266 (8)0.0131 (7)
O2W0.0446 (8)0.0401 (7)0.0439 (11)0.0140 (6)0.0143 (7)0.0084 (7)
O20.0562 (9)0.0403 (7)0.0529 (11)0.0258 (6)0.0295 (8)0.0251 (7)
O30.0481 (9)0.0496 (9)0.0649 (14)0.0037 (7)0.0082 (8)−0.0152 (8)
O3W0.0591 (10)0.0344 (7)0.1180 (19)0.0198 (7)0.0337 (12)0.0212 (9)
O40.0352 (7)0.0413 (7)0.0505 (11)0.0110 (6)0.0120 (7)0.0020 (7)
O50.0323 (7)0.0601 (9)0.0504 (11)0.0180 (7)0.0006 (7)−0.0080 (8)
N10.0384 (8)0.0304 (7)0.0386 (11)0.0108 (6)0.0135 (7)0.0104 (7)
N20.0344 (8)0.0282 (7)0.0383 (11)0.0085 (6)0.0113 (7)0.0058 (6)
N30.0376 (8)0.0286 (7)0.0411 (11)0.0059 (6)0.0063 (8)0.0085 (7)

Geometric parameters (Å, °)

Mn1—O52.0761 (14)C10—C111.348 (4)
Mn1—O2i2.1066 (15)C10—H100.9300
Mn1—O1W2.1643 (15)C11—C121.409 (3)
Mn1—N22.2768 (18)C11—H110.9300
Mn1—N32.2788 (17)C12—C201.411 (3)
Mn1—O2W2.3237 (17)C12—C131.428 (3)
C1—N11.454 (3)C13—C141.341 (3)
C1—C21.518 (3)C13—H130.9300
C1—H1A0.9700C14—C151.436 (3)
C1—H1B0.9700C14—H140.9300
C2—O11.245 (2)C15—C191.394 (3)
C2—O21.254 (2)C15—C161.411 (3)
C3—O31.251 (2)C16—C171.370 (4)
C3—N11.391 (3)C16—H160.9300
C3—C41.423 (3)C17—C181.390 (3)
C4—C51.356 (3)C17—H170.9300
C4—H40.9300C18—N21.327 (2)
C5—C61.423 (3)C18—H180.9300
C5—H50.9300C19—N21.361 (3)
C6—C71.352 (3)C19—C201.444 (2)
C6—C81.503 (3)C20—N31.348 (3)
C7—N11.356 (2)O1W—H1WA0.831 (16)
C7—H70.9300O1W—H1WB0.822 (15)
C8—O41.240 (3)O2W—H2WA0.807 (16)
C8—O51.267 (2)O2W—H2WB0.856 (16)
C9—N31.324 (2)O2—Mn1i2.1066 (15)
C9—C101.401 (3)O3W—H3WA0.833 (17)
C9—H90.9300O3W—H3WB0.833 (17)
O5—Mn1—O2i105.32 (7)C10—C11—C12119.5 (2)
O5—Mn1—O1W89.47 (6)C10—C11—H11120.2
O2i—Mn1—O1W90.24 (6)C12—C11—H11120.2
O5—Mn1—N290.90 (7)C11—C12—C20116.6 (2)
O2i—Mn1—N2163.71 (6)C11—C12—C13123.4 (2)
O1W—Mn1—N288.34 (7)C20—C12—C13120.00 (19)
O5—Mn1—N3162.47 (8)C14—C13—C12121.1 (2)
O2i—Mn1—N391.35 (6)C14—C13—H13119.5
O1W—Mn1—N395.98 (7)C12—C13—H13119.5
N2—Mn1—N372.68 (6)C13—C14—C15120.6 (2)
O5—Mn1—O2W85.20 (6)C13—C14—H14119.7
O2i—Mn1—O2W89.67 (6)C15—C14—H14119.7
O1W—Mn1—O2W174.44 (6)C19—C15—C16117.6 (2)
N2—Mn1—O2W93.29 (6)C19—C15—C14120.02 (19)
N3—Mn1—O2W89.58 (6)C16—C15—C14122.4 (2)
N1—C1—C2112.73 (16)C17—C16—C15118.7 (2)
N1—C1—H1A109.0C17—C16—H16120.7
C2—C1—H1A109.0C15—C16—H16120.7
N1—C1—H1B109.0C16—C17—C18119.7 (2)
C2—C1—H1B109.0C16—C17—H17120.1
H1A—C1—H1B107.8C18—C17—H17120.1
O1—C2—O2126.3 (2)N2—C18—C17123.2 (2)
O1—C2—C1116.48 (17)N2—C18—H18118.4
O2—C2—C1117.18 (19)C17—C18—H18118.4
O3—C3—N1118.6 (2)N2—C19—C15123.24 (17)
O3—C3—C4126.2 (2)N2—C19—C20117.09 (18)
N1—C3—C4115.20 (17)C15—C19—C20119.66 (18)
C5—C4—C3122.79 (19)N3—C20—C12123.26 (18)
C5—C4—H4118.6N3—C20—C19118.13 (17)
C3—C4—H4118.6C12—C20—C19118.59 (19)
C4—C5—C6119.4 (2)Mn1—O1W—H1WA128.8 (17)
C4—C5—H5120.3Mn1—O1W—H1WB122.9 (17)
C6—C5—H5120.3H1WA—O1W—H1WB108 (2)
C7—C6—C5117.71 (18)Mn1—O2W—H2WA96 (2)
C7—C6—C8119.05 (17)Mn1—O2W—H2WB93.0 (18)
C5—C6—C8123.23 (19)H2WA—O2W—H2WB104 (2)
C6—C7—N1122.87 (18)C2—O2—Mn1i134.18 (16)
C6—C7—H7118.6H3WA—O3W—H3WB104 (2)
N1—C7—H7118.6C8—O5—Mn1140.26 (15)
O4—C8—O5124.86 (19)C7—N1—C3121.96 (18)
O4—C8—C6120.83 (18)C7—N1—C1119.42 (17)
O5—C8—C6114.31 (19)C3—N1—C1118.32 (17)
N3—C9—C10122.1 (2)C18—N2—C19117.50 (19)
N3—C9—H9118.9C18—N2—Mn1126.40 (15)
C10—C9—H9118.9C19—N2—Mn1116.08 (12)
C11—C10—C9120.2 (2)C9—N3—C20118.22 (18)
C11—C10—H10119.9C9—N3—Mn1125.89 (16)
C9—C10—H10119.9C20—N3—Mn1115.89 (12)
N1—C1—C2—O1178.22 (17)N2—Mn1—O5—C8−84.9 (3)
N1—C1—C2—O2−2.5 (3)N3—Mn1—O5—C8−64.8 (4)
O3—C3—C4—C5−179.9 (3)O2W—Mn1—O5—C88.3 (3)
N1—C3—C4—C5−0.4 (3)C6—C7—N1—C3−2.2 (3)
C3—C4—C5—C60.0 (4)C6—C7—N1—C1−175.7 (2)
C4—C5—C6—C7−0.6 (3)O3—C3—N1—C7−179.1 (2)
C4—C5—C6—C8178.7 (2)C4—C3—N1—C71.5 (3)
C5—C6—C7—N11.6 (3)O3—C3—N1—C1−5.4 (3)
C8—C6—C7—N1−177.63 (18)C4—C3—N1—C1175.09 (19)
C7—C6—C8—O4172.8 (2)C2—C1—N1—C787.7 (2)
C5—C6—C8—O4−6.4 (3)C2—C1—N1—C3−86.1 (2)
C7—C6—C8—O5−6.9 (3)C17—C18—N2—C19−0.3 (3)
C5—C6—C8—O5173.9 (2)C17—C18—N2—Mn1−178.77 (18)
N3—C9—C10—C11−1.5 (5)C15—C19—N2—C181.4 (3)
C9—C10—C11—C120.2 (5)C20—C19—N2—C18−177.59 (18)
C10—C11—C12—C200.3 (4)C15—C19—N2—Mn1−179.97 (16)
C10—C11—C12—C13−177.8 (3)C20—C19—N2—Mn11.1 (2)
C11—C12—C13—C14176.6 (2)O5—Mn1—N2—C18−9.93 (18)
C20—C12—C13—C14−1.5 (4)O2i—Mn1—N2—C18164.7 (2)
C12—C13—C14—C151.3 (4)O1W—Mn1—N2—C1879.51 (18)
C13—C14—C15—C190.2 (3)N3—Mn1—N2—C18176.30 (19)
C13—C14—C15—C16−179.3 (2)O2W—Mn1—N2—C18−95.17 (18)
C19—C15—C16—C17−0.7 (3)O5—Mn1—N2—C19171.54 (14)
C14—C15—C16—C17178.9 (2)O2i—Mn1—N2—C19−13.9 (3)
C15—C16—C17—C181.7 (4)O1W—Mn1—N2—C19−99.02 (14)
C16—C17—C18—N2−1.3 (4)N3—Mn1—N2—C19−2.23 (13)
C16—C15—C19—N2−0.9 (3)O2W—Mn1—N2—C1986.30 (14)
C14—C15—C19—N2179.6 (2)C10—C9—N3—C202.0 (4)
C16—C15—C19—C20178.02 (19)C10—C9—N3—Mn1−177.0 (2)
C14—C15—C19—C20−1.5 (3)C12—C20—N3—C9−1.4 (3)
C11—C12—C20—N30.2 (3)C19—C20—N3—C9176.9 (2)
C13—C12—C20—N3178.5 (2)C12—C20—N3—Mn1177.73 (16)
C11—C12—C20—C19−178.11 (19)C19—C20—N3—Mn1−3.9 (2)
C13—C12—C20—C190.1 (3)O5—Mn1—N3—C9161.2 (2)
N2—C19—C20—N31.9 (3)O2i—Mn1—N3—C9−0.9 (2)
C15—C19—C20—N3−177.08 (18)O1W—Mn1—N3—C9−91.3 (2)
N2—C19—C20—C12−179.65 (18)N2—Mn1—N3—C9−177.7 (2)
C15—C19—C20—C121.4 (3)O2W—Mn1—N3—C988.7 (2)
O1—C2—O2—Mn1i17.7 (3)O5—Mn1—N3—C20−17.9 (3)
C1—C2—O2—Mn1i−161.47 (15)O2i—Mn1—N3—C20179.98 (15)
O4—C8—O5—Mn11.0 (4)O1W—Mn1—N3—C2089.60 (15)
C6—C8—O5—Mn1−179.30 (18)N2—Mn1—N3—C203.23 (14)
O2i—Mn1—O5—C896.6 (3)O2W—Mn1—N3—C20−90.35 (15)
O1W—Mn1—O5—C8−173.3 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.83 (2)1.97 (2)2.773 (2)163 (3)
O1W—H1WB···O3Wiii0.82 (2)1.92 (2)2.730 (2)169 (3)
O2W—H2WA···O40.81 (2)2.00 (2)2.783 (2)164 (2)
O2W—H2WA···O50.81 (2)2.57 (3)2.984 (2)114 (2)
O2W—H2WB···O1i0.86 (2)1.96 (2)2.806 (2)170 (3)
O3W—H3WA···O10.83 (2)1.96 (2)2.775 (2)165 (3)

Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2783).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des.8, 3586–3594.
  • Huang, Y. G., Yuan, D. Q., Gong, Y. Q., Jiang, F. L. & Hong, M. C. (2008). J. Mol. Struct.872, 99–104.
  • Jiang, M. X., Feng, Y. L., He, Y. H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856–2860.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tong, M. L., Hu, S., Wang, J., Kitagawa, S. & Ng, S. W. (2005). Cryst. Growth Des.5, 837–839.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography