PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1204.
Published online 2009 May 7. doi:  10.1107/S160053680901616X
PMCID: PMC2969744

Methyl 2-(benzene­sulfonamido)acetate

Abstract

The title compound, C9H11NO4S, is of inter­est as a precursor to biologically active benzothia­zines. The crystal structure is stabilized by inter­molecular N—H(...)O and C—H(...)O inter­actions.

Related literature

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle], 2009 [triangle]); Xiao & Timberlake (2000 [triangle]); Martinez et al. (2000 [triangle]); Berredjem et al. (2000 [triangle]); Lee & Lee (2002 [triangle]). For related literature on sulfonamides, see: Esteve & Bidal (2002 [triangle]); Soledade et al. (2006 [triangle]). For related structures, see: Gowda et al. (2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1204-scheme1.jpg

Experimental

Crystal data

  • C9H11NO4S
  • M r = 229.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1204-efi1.jpg
  • a = 9.7268 (8) Å
  • b = 5.0781 (4) Å
  • c = 10.9286 (9) Å
  • β = 100.087 (3)°
  • V = 531.46 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.23 × 0.11 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.935, T max = 0.977
  • 6159 measured reflections
  • 2216 independent reflections
  • 1944 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.07
  • 2216 reflections
  • 137 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 394 Friedel pairs
  • Flack parameter: 0.089 (8)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901616X/bt2940sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901616X/bt2940Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer. MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042- 120607-PS2–183.

supplementary crystallographic information

Comment

Sulfonamide is an important functionality found in many naturally occurring as well as synthetic compounds which possess numerous types of biological activities (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee & Lee, 2002). In the present paper, the structure of the title compound has been determined as a part of our ongoing research on the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2009). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in related sulfonamide molecules (Gowda et al., 2007a, 2007b, 2007c) and the bond lengths are within normal ranges. In the crystal structure, each molecule is linked to an adjacent one through C7—H7B···O3 contacts giving rise to chains along b-axis. Each molecule of the chain is further linked to the one of its neighbouring chain along a through intermolecular N—H···O interactions.

Experimental

A mixture of benzene sulfonic acid (4.14 g, 23.44 mmoles), glycine methyl ester hydrochloride (2.94 g, 23.44 mmol.) and distilled water (50.0 ml) was stirred for half an hour. pH of the reaction mixture was adjusted to 8.0 with an aqueous sodium carbonate solution. After completion of the reaction, a white solid product was isolated, washed, dried and recrystallized in methanol to get the crystals suitable for for X-ray studies; m.p. 332 K.

Refinement

H atoms were placed in geometric positions (C—H = 0.93-0.97 Å; N—H = 0.86 Å) using a riding model with Uiso(H) = 1.2 Ueq(C,N) or Uiso(H) = 1.5 Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure, showing hydrogen bond interactions (dashed lines). along the [0 0 1] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H11NO4SF(000) = 240
Mr = 229.26Dx = 1.433 Mg m3
Monoclinic, P21Melting point: 332 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.7268 (8) ÅCell parameters from 2710 reflections
b = 5.0781 (4) Åθ = 2.6–26.6°
c = 10.9286 (9) ŵ = 0.30 mm1
β = 100.087 (3)°T = 296 K
V = 531.46 (7) Å3Plates, colourless
Z = 20.23 × 0.11 × 0.08 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2216 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 29.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −12→13
Tmin = 0.935, Tmax = 0.977k = −4→6
6159 measured reflectionsl = −11→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0105P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2216 reflectionsΔρmax = 0.25 e Å3
137 parametersΔρmin = −0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 394 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.089 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.61607 (5)0.09862 (10)0.21011 (5)0.03580 (15)
O10.52527 (16)−0.0799 (4)0.25831 (16)0.0482 (4)
O20.72360 (15)0.0024 (4)0.14799 (15)0.0468 (4)
O30.27134 (16)0.0012 (4)0.03143 (16)0.0469 (4)
O40.16275 (17)0.2366 (4)0.15812 (18)0.0589 (5)
N10.51744 (17)0.2853 (4)0.11147 (16)0.0389 (5)
H10.54230.32940.04260.047*
C10.6962 (2)0.2993 (5)0.3344 (2)0.0366 (5)
C20.6546 (3)0.2854 (7)0.4486 (2)0.0537 (7)
H20.58470.16870.46140.064*
C30.7181 (3)0.4473 (8)0.5441 (2)0.0669 (9)
H30.69130.43820.62160.080*
C40.8199 (3)0.6206 (8)0.5249 (3)0.0646 (8)
H40.86120.73030.58910.078*
C50.8614 (3)0.6333 (7)0.4113 (3)0.0602 (7)
H50.93170.74940.39920.072*
C60.7990 (2)0.4739 (5)0.3148 (2)0.0481 (6)
H60.82590.48430.23740.058*
C70.3858 (2)0.3768 (5)0.1419 (2)0.0365 (5)
H7B0.36100.54370.10080.044*
H7A0.39660.40500.23090.044*
C80.2709 (2)0.1813 (5)0.10223 (19)0.0346 (5)
C90.0435 (3)0.0566 (10)0.1303 (3)0.0886 (12)
H9A0.01320.04690.04190.133*
H9B−0.03150.12040.16870.133*
H9C0.0709−0.11550.16190.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0316 (2)0.0341 (3)0.0417 (3)−0.0008 (3)0.00653 (19)0.0014 (3)
O10.0446 (9)0.0426 (10)0.0565 (10)−0.0084 (8)0.0069 (8)0.0094 (9)
O20.0390 (8)0.0496 (11)0.0525 (10)0.0075 (8)0.0099 (7)−0.0064 (8)
O30.0415 (9)0.0443 (10)0.0559 (10)−0.0052 (8)0.0114 (7)−0.0095 (9)
O40.0329 (8)0.0774 (14)0.0701 (11)−0.0025 (9)0.0194 (8)−0.0181 (11)
N10.0333 (9)0.0445 (12)0.0393 (10)−0.0014 (9)0.0074 (8)0.0040 (9)
C10.0292 (10)0.0377 (13)0.0412 (11)0.0037 (9)0.0014 (8)0.0020 (10)
C20.0461 (14)0.0662 (19)0.0502 (14)−0.0020 (14)0.0123 (11)−0.0009 (14)
C30.0632 (17)0.091 (3)0.0467 (15)0.0050 (18)0.0092 (13)−0.0126 (16)
C40.0643 (16)0.064 (2)0.0587 (15)0.0052 (18)−0.0098 (12)−0.0190 (18)
C50.0537 (14)0.051 (2)0.0701 (16)−0.0110 (15)−0.0044 (12)−0.0030 (16)
C60.0469 (13)0.0451 (16)0.0518 (14)−0.0052 (12)0.0071 (11)0.0017 (12)
C70.0352 (11)0.0327 (13)0.0423 (11)0.0031 (10)0.0082 (9)0.0019 (10)
C80.0295 (10)0.0394 (14)0.0342 (10)0.0059 (9)0.0038 (8)0.0031 (10)
C90.0397 (14)0.116 (3)0.114 (3)−0.0180 (19)0.0257 (16)−0.015 (3)

Geometric parameters (Å, °)

S1—O11.4290 (16)C3—C41.369 (4)
S1—O21.4291 (15)C3—H30.9300
S1—N11.618 (2)C4—C51.372 (4)
S1—C11.767 (2)C4—H40.9300
O3—C81.198 (3)C5—C61.383 (4)
O4—C81.336 (2)C5—H50.9300
O4—C91.466 (4)C6—H60.9300
N1—C71.454 (3)C7—C81.501 (3)
N1—H10.8600C7—H7B0.9700
C1—C21.380 (3)C7—H7A0.9700
C1—C61.381 (3)C9—H9A0.9600
C2—C31.386 (4)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
O1—S1—O2120.61 (11)C4—C5—C6120.2 (3)
O1—S1—N1106.53 (9)C4—C5—H5119.9
O2—S1—N1106.36 (9)C6—C5—H5119.9
O1—S1—C1107.48 (10)C1—C6—C5119.4 (2)
O2—S1—C1107.55 (10)C1—C6—H6120.3
N1—S1—C1107.73 (10)C5—C6—H6120.3
C8—O4—C9115.6 (2)N1—C7—C8111.31 (18)
C7—N1—S1118.54 (14)N1—C7—H7B109.4
C7—N1—H1120.7C8—C7—H7B109.4
S1—N1—H1120.7N1—C7—H7A109.4
C2—C1—C6120.6 (2)C8—C7—H7A109.4
C2—C1—S1120.4 (2)H7B—C7—H7A108.0
C6—C1—S1119.01 (17)O3—C8—O4123.2 (2)
C1—C2—C3119.2 (3)O3—C8—C7127.20 (19)
C1—C2—H2120.4O4—C8—C7109.60 (19)
C3—C2—H2120.4O4—C9—H9A109.5
C4—C3—C2120.3 (3)O4—C9—H9B109.5
C4—C3—H3119.8H9A—C9—H9B109.5
C2—C3—H3119.8O4—C9—H9C109.5
C3—C4—C5120.3 (3)H9A—C9—H9C109.5
C3—C4—H4119.9H9B—C9—H9C109.5
C5—C4—H4119.9
O1—S1—N1—C740.2 (2)C1—C2—C3—C40.6 (5)
O2—S1—N1—C7170.05 (17)C2—C3—C4—C5−0.8 (5)
C1—S1—N1—C7−74.87 (19)C3—C4—C5—C61.0 (5)
O1—S1—C1—C2−7.1 (2)C2—C1—C6—C50.8 (4)
O2—S1—C1—C2−138.4 (2)S1—C1—C6—C5179.5 (2)
N1—S1—C1—C2107.3 (2)C4—C5—C6—C1−1.0 (4)
O1—S1—C1—C6174.20 (18)S1—N1—C7—C8−86.9 (2)
O2—S1—C1—C642.9 (2)C9—O4—C8—O31.7 (3)
N1—S1—C1—C6−71.3 (2)C9—O4—C8—C7−178.5 (2)
C6—C1—C2—C3−0.6 (4)N1—C7—C8—O3−15.8 (3)
S1—C1—C2—C3−179.2 (2)N1—C7—C8—O4164.42 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.282.998 (2)141
C7—H7B···O3ii0.972.553.503 (4)168

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2940).

References

  • Berredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem.165, 249–264.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Esteve, C. & Bidal, B. (2002). Tetrahedron Lett.43, 1019–1021.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  • Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc.23, 167–169.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem.43, 3267–3273. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem.14, 4958–4979. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography