PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m663.
Published online 2009 May 20. doi:  10.1107/S1600536809017590
PMCID: PMC2969743

Bis[4-(dimethyl­amino)pyridinium] tetra­bromidobis(3,4-dichloro­phen­yl)stannate(IV)–1-bromo-3,4-dichloro­benzene (1/1)

Abstract

The Sn atom in the title substituted pyridinium stannate bromo-3,4-dichloro­benzene solvate, (C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2, lies on a twofold axis within an octa­hedral C2Br4 donor set. Each cation forms an N—H(...)Br hydrogen bond to one of the Br atoms of the anion. The solvent mol­ecule is disordered about the twofold rotation axis with equal occupancy. The crystal under investigation was non-merohedrally twinned, with a twin component ratio of 0.76:0.24.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­halido­diorgano­stan­nates, see: Lo & Ng (2008a [triangle],b [triangle]); Yap et al. (2008 [triangle]). For deconvolution of the diffraction data, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m663-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2
  • M r = 1202.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m663-efi1.jpg
  • a = 19.2308 (2) Å
  • b = 13.8983 (2) Å
  • c = 15.4961 (2) Å
  • β = 107.491 (1)°
  • V = 3950.23 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.14 mm−1
  • T = 100 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.309, T max = 0.459 (expected range = 0.268–0.398)
  • 17636 measured reflections
  • 4495 independent reflections
  • 4061 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.243
  • S = 1.47
  • 4495 reflections
  • 225 parameters
  • 39 restraints
  • H-atom parameters constrained
  • Δρmax = 2.01 e Å−3
  • Δρmin = −1.80 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017590/tk2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017590/tk2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (RG020/09AFR).

supplementary crystallographic information

Experimental

Tetrakis(3,4-dichlorophenyl)tin (0.70 g, 1 mol) and 4-dimethylaminopyridine hydrobromide perbromide (0.73 g, 2 mmol) were heated in ethanol/chloroform (1:1 v/v, 100 ml) for 3 h. Crystals separated from the cool solution after a day.

The presence of bromo-3,4-dichlorobenzene in the crystal structure probably arose from contamination of the tetrakis(3,4-dichlorophenyl)tin reactant, which itself was synthesized in a Grignard reaction with bromo-3,4-dichlorobenzene as the starting halogen-bearing compound.

Refinement

The structure initially refined to 7.7%. PLATON (Spek, 2009) gave the twin law as (1 0 0.746, 0 - 1 0, 0 0 - 1); a new hkl file was generated by using the detwinning tool in the program.

The aromatic and pyridyl rings were refined as rigid hexagons of 1.39 Å sides. For the lattice solvent molecule, which is situated about a 2-fold axis, the C–Cl distance was restrained to 1.74±0.01 Å and the C–Br distance to 1.90±0.01 Å. The molecule was allowed to refine off the 2-fold rotation axis. The anisotropic displacement factors of the carbon atoms were restrained to be nearly isotropic.

SHELXL-97 suggested an unusually large values for a and b in the weighting scheme, and so the suggested scheme was not used. Instead, an arbitrary value of a = 0.15 was used which gave a statisfactory Goodness-of-Fit of about 1.5.

Hydrogen atoms were placed in calculated positions (C—H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N). The torsion angles of the methyl groups were refined.

The final difference Fourier map had a large peak at 1.3 Å from H7 and a deep hole at 1.5 Å from H15.

Figures

Fig. 1.
70% Probability thermal ellipsoid plot of the ion-pair (C7H11N2)2 [SnBr4(C6H3Cl2)2].C6H3BrCl2. Unlabelled atoms are related by a 2-fold axis. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2F(000) = 2312
Mr = 1202.55Dx = 2.022 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9914 reflections
a = 19.2308 (2) Åθ = 2.2–28.4°
b = 13.8983 (2) ŵ = 6.14 mm1
c = 15.4961 (2) ÅT = 100 K
β = 107.491 (1)°Block, colorless
V = 3950.23 (9) Å30.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer4495 independent reflections
Radiation source: fine-focus sealed tube4061 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −24→24
Tmin = 0.309, Tmax = 0.459k = −18→18
17636 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.243H-atom parameters constrained
S = 1.47w = 1/[σ2(Fo2) + (0.15P)2] where P = (Fo2 + 2Fc2)/3
4495 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 2.01 e Å3
39 restraintsΔρmin = −1.80 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sn10.50000.61725 (3)0.75000.0092 (2)
Br20.44267 (3)0.48127 (5)0.62311 (4)0.0174 (2)
Br10.44630 (3)0.75638 (5)0.62507 (4)0.0186 (2)
Cl10.81264 (8)0.62573 (10)0.85386 (12)0.0179 (4)
Cl20.81408 (10)0.62116 (11)0.65044 (13)0.0243 (4)
N20.2115 (3)0.6236 (4)0.1836 (4)0.0196 (12)
C10.60066 (16)0.6174 (2)0.7153 (3)0.0102 (11)
C20.6660 (2)0.6216 (2)0.7850 (2)0.0102 (11)
H20.66570.62380.84610.012*
C30.73187 (16)0.6224 (2)0.7651 (2)0.0138 (12)
C40.73233 (17)0.6191 (3)0.6756 (3)0.0155 (13)
C50.6670 (2)0.6150 (3)0.6060 (2)0.0151 (13)
H50.66730.61280.54490.018*
C60.60113 (17)0.6142 (2)0.6259 (2)0.0175 (13)
H60.55640.61130.57830.021*
N10.3539 (2)0.6345 (3)0.4428 (2)0.0293 (14)
H10.38420.63710.49810.035*
C70.38080 (17)0.6245 (3)0.3695 (3)0.0244 (16)
H70.43190.62050.37900.029*
C80.3330 (2)0.6204 (3)0.2822 (3)0.0185 (14)
H80.35140.61350.23200.022*
C90.2582 (2)0.6262 (3)0.2682 (2)0.0144 (12)
C100.23132 (17)0.6362 (3)0.3415 (3)0.0185 (13)
H100.18020.64010.33200.022*
C110.2791 (2)0.6403 (3)0.4288 (2)0.0239 (14)
H110.26080.64710.47900.029*
C120.2386 (5)0.6177 (5)0.1057 (5)0.0273 (17)
H12A0.26950.67370.10500.041*
H12B0.19740.61680.05010.041*
H12C0.26720.55870.10950.041*
C130.1323 (4)0.6238 (5)0.1685 (6)0.0268 (17)
H13A0.11960.57270.20470.040*
H13B0.10710.61260.10430.040*
H13C0.11750.68620.18660.040*
Br30.5258 (5)0.7963 (5)0.4343 (4)0.0355 (11)0.50
Cl30.4624 (2)0.9970 (3)0.0505 (2)0.0351 (9)0.50
Cl40.4620 (14)0.7751 (14)0.0633 (11)0.038 (3)0.50
C140.5139 (16)0.8551 (8)0.3234 (8)0.027 (4)0.50
C150.501 (2)0.7983 (4)0.2464 (11)0.027 (3)0.50
H150.50330.73020.25170.032*0.50
C160.4852 (16)0.8411 (7)0.1616 (9)0.025 (4)0.50
C170.4820 (8)0.9408 (8)0.1538 (4)0.023 (4)0.50
C180.4948 (9)0.9976 (4)0.2309 (6)0.023 (4)0.50
H180.49261.06570.22550.028*0.50
C190.5107 (8)0.9548 (8)0.3156 (4)0.021 (3)0.50
H190.51940.99360.36830.025*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0068 (4)0.0113 (4)0.0099 (3)0.0000.0031 (2)0.000
Br20.0141 (4)0.0186 (4)0.0195 (4)−0.0016 (2)0.0048 (3)−0.0054 (2)
Br10.0175 (4)0.0215 (4)0.0169 (4)0.0013 (2)0.0050 (3)0.0030 (2)
Cl10.0082 (7)0.0195 (8)0.0236 (8)0.0003 (5)0.0010 (6)−0.0001 (5)
Cl20.0133 (8)0.0351 (10)0.0291 (9)−0.0020 (5)0.0132 (7)−0.0020 (6)
N20.019 (3)0.019 (3)0.018 (3)0.0001 (18)0.001 (2)0.0001 (19)
C10.011 (3)0.009 (3)0.011 (3)0.0016 (17)0.003 (2)0.0001 (17)
C20.007 (3)0.014 (3)0.010 (3)0.0001 (17)0.003 (2)−0.0007 (18)
C30.008 (3)0.014 (3)0.019 (3)−0.0021 (18)0.004 (2)−0.001 (2)
C40.008 (3)0.015 (3)0.026 (4)−0.0011 (18)0.008 (3)0.000 (2)
C50.016 (3)0.017 (3)0.014 (3)−0.003 (2)0.007 (2)−0.002 (2)
C60.018 (3)0.019 (3)0.016 (3)−0.002 (2)0.006 (3)−0.002 (2)
N10.027 (4)0.033 (3)0.018 (3)0.008 (2)−0.007 (3)−0.007 (2)
C70.016 (3)0.018 (3)0.033 (4)0.003 (2)−0.002 (3)−0.006 (3)
C80.016 (3)0.016 (3)0.023 (3)0.001 (2)0.007 (3)−0.002 (2)
C90.017 (3)0.012 (3)0.014 (3)−0.002 (2)0.003 (2)−0.0018 (19)
C100.015 (3)0.013 (3)0.027 (3)0.000 (2)0.006 (3)0.001 (2)
C110.033 (4)0.026 (3)0.012 (3)0.008 (3)0.007 (3)−0.002 (3)
C120.036 (5)0.031 (4)0.011 (3)0.001 (3)0.001 (3)0.001 (2)
C130.013 (4)0.032 (4)0.030 (4)0.001 (2)−0.002 (3)−0.004 (3)
Br30.050 (3)0.036 (3)0.0186 (11)−0.0140 (19)0.0077 (13)−0.0007 (11)
Cl30.049 (2)0.0289 (19)0.0208 (16)−0.0123 (16)−0.0002 (15)0.0031 (14)
Cl40.047 (7)0.039 (8)0.026 (3)0.008 (4)0.009 (3)−0.003 (3)
C140.030 (8)0.036 (7)0.017 (6)−0.012 (7)0.012 (6)0.003 (6)
C150.028 (5)0.024 (5)0.032 (5)0.003 (9)0.014 (4)−0.008 (9)
C160.018 (7)0.039 (8)0.027 (6)0.014 (6)0.018 (6)0.001 (6)
C170.024 (6)0.028 (7)0.020 (7)−0.007 (5)0.012 (5)−0.009 (6)
C180.026 (6)0.025 (5)0.019 (9)0.003 (5)0.007 (7)0.000 (4)
C190.022 (6)0.022 (6)0.023 (7)−0.007 (5)0.015 (6)0.000 (6)

Geometric parameters (Å, °)

Sn1—C1i2.159 (3)C8—C91.3900
Sn1—C12.159 (3)C8—H80.9500
Sn1—Br22.7111 (7)C9—C101.3900
Sn1—Br2i2.7111 (7)C10—C111.3900
Sn1—Br1i2.7114 (7)C10—H100.9500
Sn1—Br12.7114 (7)C11—H110.9500
Cl1—C31.739 (3)C12—H12A0.9800
Cl2—C41.730 (3)C12—H12B0.9800
N2—C91.349 (7)C12—H12C0.9800
N2—C121.454 (10)C13—H13A0.9800
N2—C131.468 (10)C13—H13B0.9800
C1—C21.3900C13—H13C0.9800
C1—C61.3900Br3—C141.855 (6)
C2—C31.3900Cl3—C171.719 (7)
C2—H20.9500Cl4—C161.718 (9)
C3—C41.3900C14—C151.3900
C4—C51.3900C14—C191.3900
C5—C61.3900C15—C161.3900
C5—H50.9500C15—H150.9500
C6—H60.9500C16—C171.3900
N1—C71.3900C17—C181.3900
N1—C111.3900C18—C191.3900
N1—H10.8800C18—H180.9500
C7—C81.3900C19—H190.9500
C7—H70.9500
C1i—Sn1—C1179.87 (18)C7—C8—C9120.0
C1i—Sn1—Br288.95 (10)C7—C8—H8120.0
C1—Sn1—Br291.15 (10)C9—C8—H8120.0
C1i—Sn1—Br2i91.15 (10)N2—C9—C8120.4 (4)
C1—Sn1—Br2i88.95 (10)N2—C9—C10119.6 (4)
Br2—Sn1—Br2i91.62 (3)C8—C9—C10120.0
C1i—Sn1—Br1i89.95 (10)C11—C10—C9120.0
C1—Sn1—Br1i89.95 (10)C11—C10—H10120.0
Br2—Sn1—Br1i178.301 (19)C9—C10—H10120.0
Br2i—Sn1—Br1i89.70 (2)C10—C11—N1120.0
C1i—Sn1—Br189.95 (10)C10—C11—H11120.0
C1—Sn1—Br189.95 (10)N1—C11—H11120.0
Br2—Sn1—Br189.70 (2)N2—C12—H12A109.5
Br2i—Sn1—Br1178.301 (19)N2—C12—H12B109.5
Br1i—Sn1—Br189.01 (3)H12A—C12—H12B109.5
C9—N2—C12120.5 (6)N2—C12—H12C109.5
C9—N2—C13120.7 (6)H12A—C12—H12C109.5
C12—N2—C13118.8 (6)H12B—C12—H12C109.5
C2—C1—C6120.0N2—C13—H13A109.5
C2—C1—Sn1118.5 (2)N2—C13—H13B109.5
C6—C1—Sn1121.5 (2)H13A—C13—H13B109.5
C3—C2—C1120.0N2—C13—H13C109.5
C3—C2—H2120.0H13A—C13—H13C109.5
C1—C2—H2120.0H13B—C13—H13C109.5
C2—C3—C4120.0C15—C14—C19120.0
C2—C3—Cl1118.8 (2)C15—C14—Br3119.1 (9)
C4—C3—Cl1121.2 (2)C19—C14—Br3120.6 (9)
C5—C4—C3120.0C16—C15—C14120.0
C5—C4—Cl2119.8 (2)C16—C15—H15120.0
C3—C4—Cl2120.2 (2)C14—C15—H15120.0
C4—C5—C6120.0C15—C16—C17120.0
C4—C5—H5120.0C15—C16—Cl4122.3 (11)
C6—C5—H5120.0C17—C16—Cl4117.6 (11)
C5—C6—C1120.0C18—C17—C16120.0
C5—C6—H6120.0C18—C17—Cl3118.3 (8)
C1—C6—H6120.0C16—C17—Cl3121.7 (8)
C7—N1—C11120.0C17—C18—C19120.0
C7—N1—H1120.0C17—C18—H18120.0
C11—N1—H1120.0C19—C18—H18120.0
C8—C7—N1120.0C18—C19—C14120.0
C8—C7—H7120.0C18—C19—H19120.0
N1—C7—H7120.0C14—C19—H19120.0
Br2—Sn1—C1—C2−138.45 (15)C12—N2—C9—C8−1.9 (6)
Br2i—Sn1—C1—C2−46.86 (16)C13—N2—C9—C8176.2 (4)
Br1i—Sn1—C1—C242.84 (16)C12—N2—C9—C10177.2 (4)
Br1—Sn1—C1—C2131.85 (16)C13—N2—C9—C10−4.7 (6)
Br2—Sn1—C1—C641.96 (17)C7—C8—C9—N2179.0 (4)
Br2i—Sn1—C1—C6133.56 (17)C7—C8—C9—C100.0
Br1i—Sn1—C1—C6−136.74 (17)N2—C9—C10—C11−179.0 (4)
Br1—Sn1—C1—C6−47.73 (17)C8—C9—C10—C110.0
C6—C1—C2—C30.0C9—C10—C11—N10.0
Sn1—C1—C2—C3−179.6 (2)C7—N1—C11—C100.0
C1—C2—C3—C40.0C19—C14—C15—C160.0
C1—C2—C3—Cl1−179.0 (2)Br3—C14—C15—C16173.9 (18)
C2—C3—C4—C50.0C14—C15—C16—C170.0
Cl1—C3—C4—C5179.0 (3)C14—C15—C16—Cl4−175 (2)
C2—C3—C4—Cl2179.5 (3)C15—C16—C17—C180.0
Cl1—C3—C4—Cl2−1.5 (3)Cl4—C16—C17—C18175.1 (19)
C3—C4—C5—C60.0C15—C16—C17—Cl3−179.9 (11)
Cl2—C4—C5—C6−179.5 (3)Cl4—C16—C17—Cl3−5(2)
C4—C5—C6—C10.0C16—C17—C18—C190.0
C2—C1—C6—C50.0Cl3—C17—C18—C19179.9 (10)
Sn1—C1—C6—C5179.6 (2)C17—C18—C19—C140.0
C11—N1—C7—C80.0C15—C14—C19—C180.0
N1—C7—C8—C90.0Br3—C14—C19—C18−173.8 (18)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.583.315 (3)142

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2446).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lo, K. M. & Ng, S. W. (2008a). Acta Cryst. E64, m800. [PMC free article] [PubMed]
  • Lo, K. M. & Ng, S. W. (2008b). Acta Cryst. E64, m834. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography