PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m630.
Published online 2009 May 14. doi:  10.1107/S1600536809016687
PMCID: PMC2969737

Dipyridinium tribromidochloridobis(4-chloro­phen­yl)stannate(IV)

Abstract

The tin atom in the substituted ammonium stannate(IV), (C5H6N)2[SnBr3(C6H4Cl)2Cl], lies on a center of symmetry in a distorted octa­hedral coordination geometry. Each independent halogen site is occupied by bromine and chlorine anions in an approximate 3:1 ratio. The pyridinium cation forms a hydrogen bond to only one of the halogen atoms.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­halido­diorgano­stannates, see: Lo & Ng (2008a [triangle],b [triangle]); Yap et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m630-scheme1.jpg

Experimental

Crystal data

  • (C5H6N)2[SnBr3(C6H4Cl)2Cl]
  • M r = 777.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m630-efi1.jpg
  • a = 11.5130 (2) Å
  • b = 11.7139 (2) Å
  • c = 18.7748 (3) Å
  • β = 93.230 (1)°
  • V = 2527.99 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.08 mm−1
  • T = 100 K
  • 0.27 × 0.19 × 0.12 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.327, T max = 0.529 (expected range = 0.298–0.482)
  • 11728 measured reflections
  • 2903 independent reflections
  • 2668 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.047
  • S = 1.02
  • 2903 reflections
  • 146 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å) (X = Br, Cl)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016687/bt2945sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016687/bt2945Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (RG020/09AFR).

supplementary crystallographic information

Experimental

Bis(4-chlorophenyl)tin dichloride (0.40 g, 1 mol) and pyridine hydrobromide perbromide (0.64 g, 2 mmol) were heated in chloroform for 3 h. Crystals separated from the cool solution after a day.

Refinement

Hydrogen atoms were placed in calculated positions (C—H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N).

Each of the two independent tin-bound halogen atoms is a mixture of chlorine and bromine; as the total occupancy of chlorine refined to nearly 0.5 and that of bromine to nearly 1.5, these values were fixed as 0.5 and 1.5. Furthermore, the different halogen atoms sharing the same site were constrained to have the same coordinates and the same anisotropic displacement parameters. The final difference Fourier map did not have large peaks/deep holes near the disordered atoms.

Figures

Fig. 1.
70% Probability anisotropic displacement ellipsoid plot of the ion-pair 2(C5H6 N) [SnBr3Cl(C6H4Cl)2]. Hydrogen atoms are drawn as spheres of arbitrary radius. Dashed lines denote hydrogen bonds. The tin-bound halogen atoms are disordered.

Crystal data

(C5H6N)2[SnBr3(C6H4Cl)2Cl]F(000) = 1488
Mr = 777.17Dx = 2.042 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6664 reflections
a = 11.5130 (2) Åθ = 2.5–28.3°
b = 11.7139 (2) ŵ = 6.08 mm1
c = 18.7748 (3) ÅT = 100 K
β = 93.230 (1)°Prism, brown
V = 2527.99 (7) Å30.27 × 0.19 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer2903 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.327, Tmax = 0.529k = −15→15
11728 measured reflectionsl = −23→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0246P)2 + 3.4843P] where P = (Fo2 + 2Fc2)/3
2903 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = −0.83 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01196 (6)
Br10.308690 (19)0.509165 (19)0.578153 (12)0.01383 (8)0.7365 (11)
Br20.551744 (19)0.288797 (18)0.550827 (12)0.01450 (7)0.7635 (11)
Cl1'0.308690 (19)0.509165 (19)0.578153 (12)0.01383 (8)0.2635 (11)
Cl2'0.551744 (19)0.288797 (18)0.550827 (12)0.01450 (7)0.2365 (11)
Cl10.83429 (5)0.71755 (5)0.76748 (3)0.02688 (12)
N10.15868 (16)0.59124 (16)0.43101 (10)0.0217 (4)
H10.22060.58910.46070.026*
C10.60325 (16)0.57206 (16)0.58772 (10)0.0129 (4)
C20.60187 (18)0.52532 (17)0.65598 (11)0.0165 (4)
H20.55220.46260.66440.020*
C30.67258 (18)0.56972 (18)0.71184 (11)0.0188 (4)
H30.67160.53790.75840.023*
C40.74442 (17)0.66121 (18)0.69830 (11)0.0182 (4)
C50.74654 (17)0.70998 (17)0.63157 (11)0.0171 (4)
H50.79610.77290.62340.021*
C60.67469 (17)0.66515 (17)0.57641 (11)0.0155 (4)
H60.67450.69870.53030.019*
C70.0884 (2)0.50083 (18)0.42776 (13)0.0225 (5)
H70.10480.43660.45750.027*
C8−0.0077 (2)0.50100 (18)0.38125 (13)0.0235 (5)
H8−0.05790.43660.37770.028*
C9−0.03042 (19)0.5968 (2)0.33953 (12)0.0238 (5)
H9−0.09710.59880.30740.029*
C100.0440 (2)0.68937 (19)0.34465 (12)0.0231 (5)
H100.02900.75520.31610.028*
C110.13982 (19)0.68517 (19)0.39135 (12)0.0224 (5)
H110.19200.74790.39550.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01296 (10)0.01329 (10)0.00948 (10)−0.00098 (6)−0.00070 (7)0.00034 (7)
Br10.01297 (12)0.01610 (12)0.01249 (13)−0.00044 (8)0.00142 (9)0.00093 (8)
Br20.01749 (12)0.01242 (11)0.01334 (12)0.00098 (8)−0.00136 (8)0.00188 (8)
Cl1'0.01297 (12)0.01610 (12)0.01249 (13)−0.00044 (8)0.00142 (9)0.00093 (8)
Cl2'0.01749 (12)0.01242 (11)0.01334 (12)0.00098 (8)−0.00136 (8)0.00188 (8)
Cl10.0254 (3)0.0349 (3)0.0193 (3)−0.0073 (2)−0.0073 (2)−0.0056 (2)
N10.0177 (9)0.0277 (10)0.0190 (9)0.0050 (7)−0.0038 (7)−0.0047 (8)
C10.0126 (9)0.0155 (9)0.0103 (9)0.0020 (7)−0.0011 (7)−0.0014 (7)
C20.0160 (9)0.0177 (9)0.0156 (10)−0.0017 (7)0.0004 (8)−0.0001 (8)
C30.0221 (10)0.0222 (10)0.0119 (9)0.0010 (8)−0.0016 (8)0.0022 (8)
C40.0153 (10)0.0237 (10)0.0150 (10)0.0002 (8)−0.0041 (8)−0.0054 (8)
C50.0155 (9)0.0170 (9)0.0188 (10)−0.0028 (7)0.0002 (8)−0.0013 (8)
C60.0154 (9)0.0170 (9)0.0142 (10)0.0012 (7)0.0018 (7)0.0010 (8)
C70.0251 (12)0.0223 (11)0.0204 (12)0.0064 (8)0.0055 (9)0.0023 (9)
C80.0194 (11)0.0239 (11)0.0276 (13)−0.0015 (8)0.0062 (9)−0.0024 (9)
C90.0173 (10)0.0332 (12)0.0204 (11)0.0049 (9)−0.0028 (8)−0.0028 (9)
C100.0280 (11)0.0214 (10)0.0201 (11)0.0058 (9)0.0029 (9)0.0019 (9)
C110.0251 (11)0.0196 (10)0.0225 (11)−0.0018 (8)0.0034 (9)−0.0048 (9)

Geometric parameters (Å, °)

Sn1—C1i2.149 (2)C3—C41.386 (3)
Sn1—C12.149 (2)C3—H30.9500
Sn1—Br12.7166 (2)C4—C51.378 (3)
Sn1—Cl2'i2.7060 (2)C5—C61.391 (3)
Sn1—Br2i2.7060 (2)C5—H50.9500
Sn1—Br22.7060 (2)C6—H60.9500
Sn1—Cl1'i2.7166 (2)C7—C81.370 (3)
Sn1—Br1i2.7166 (2)C7—H70.9500
Cl1—C41.744 (2)C8—C91.384 (3)
N1—C71.332 (3)C8—H80.9500
N1—C111.339 (3)C9—C101.383 (3)
N1—H10.8800C9—H90.9500
C1—C61.389 (3)C10—C111.371 (3)
C1—C21.394 (3)C10—H100.9500
C2—C31.392 (3)C11—H110.9500
C2—H20.9500
C1i—Sn1—C1180.000 (1)C6—C1—Sn1119.86 (14)
C1i—Sn1—Cl2'i89.29 (5)C2—C1—Sn1121.05 (14)
C1—Sn1—Cl2'i90.71 (5)C3—C2—C1120.63 (19)
C1i—Sn1—Br2i89.29 (5)C3—C2—H2119.7
C1—Sn1—Br2i90.71 (5)C1—C2—H2119.7
Cl2'i—Sn1—Br2i0.000 (13)C4—C3—C2118.71 (19)
C1i—Sn1—Br290.71 (5)C4—C3—H3120.6
C1—Sn1—Br289.29 (5)C2—C3—H3120.6
Cl2'i—Sn1—Br2180.0C5—C4—C3121.90 (19)
Br2i—Sn1—Br2180.0C5—C4—Cl1118.68 (16)
C1i—Sn1—Cl1'i90.05 (5)C3—C4—Cl1119.41 (17)
C1—Sn1—Cl1'i89.95 (5)C4—C5—C6118.67 (19)
Cl2'i—Sn1—Cl1'i90.845 (7)C4—C5—H5120.7
Br2i—Sn1—Cl1'i90.845 (7)C6—C5—H5120.7
Br2—Sn1—Cl1'i89.155 (7)C5—C6—C1120.98 (19)
C1i—Sn1—Br1i90.05 (5)C5—C6—H6119.5
C1—Sn1—Br1i89.95 (5)C1—C6—H6119.5
Cl2'i—Sn1—Br1i90.845 (7)N1—C7—C8119.7 (2)
Br2i—Sn1—Br1i90.845 (7)N1—C7—H7120.2
Br2—Sn1—Br1i89.155 (7)C8—C7—H7120.2
Cl1'i—Sn1—Br1i0.000 (8)C7—C8—C9118.8 (2)
C1i—Sn1—Br189.95 (5)C7—C8—H8120.6
C1—Sn1—Br190.05 (5)C9—C8—H8120.6
Cl2'i—Sn1—Br189.155 (7)C8—C9—C10120.0 (2)
Br2i—Sn1—Br189.155 (7)C8—C9—H9120.0
Br2—Sn1—Br190.845 (7)C10—C9—H9120.0
Cl1'i—Sn1—Br1180.0C11—C10—C9119.3 (2)
Br1i—Sn1—Br1180.0C11—C10—H10120.3
C7—N1—C11123.26 (19)C9—C10—H10120.3
C7—N1—H1118.4N1—C11—C10119.0 (2)
C11—N1—H1118.4N1—C11—H11120.5
C6—C1—C2119.08 (18)C10—C11—H11120.5
Cl2'i—Sn1—C1—C6−40.72 (15)C1—C2—C3—C4−0.1 (3)
Br2i—Sn1—C1—C6−40.72 (15)C2—C3—C4—C50.9 (3)
Br2—Sn1—C1—C6139.28 (15)C2—C3—C4—Cl1−179.64 (16)
Cl1'i—Sn1—C1—C650.12 (15)C3—C4—C5—C6−0.4 (3)
Br1i—Sn1—C1—C650.12 (15)Cl1—C4—C5—C6−179.89 (15)
Br1—Sn1—C1—C6−129.88 (15)C4—C5—C6—C1−0.9 (3)
Cl2'i—Sn1—C1—C2140.70 (15)C2—C1—C6—C51.7 (3)
Br2i—Sn1—C1—C2140.70 (15)Sn1—C1—C6—C5−176.91 (15)
Br2—Sn1—C1—C2−39.30 (15)C11—N1—C7—C81.0 (3)
Cl1'i—Sn1—C1—C2−128.46 (15)N1—C7—C8—C9−1.2 (3)
Br1i—Sn1—C1—C2−128.46 (15)C7—C8—C9—C100.8 (3)
Br1—Sn1—C1—C251.54 (15)C8—C9—C10—C11−0.1 (3)
C6—C1—C2—C3−1.2 (3)C7—N1—C11—C10−0.3 (3)
Sn1—C1—C2—C3177.39 (15)C9—C10—C11—N1−0.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.553.317 (2)146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2945).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lo, K. M. & Ng, S. W. (2008a). Acta Cryst. E64, m800. [PMC free article] [PubMed]
  • Lo, K. M. & Ng, S. W. (2008b). Acta Cryst. E64, m834. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography