PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m653.
Published online 2009 May 20. doi:  10.1107/S1600536809017826
PMCID: PMC2969730

Tetra­aqua­(1,10-phenanthroline-5,6-dione-κ2 N,N′)cobalt(II) dinitrate

Abstract

The asymmetric unit of the title compound, [Co(C12H6N2O2)(H2O)4](NO3)2, consists of a CoII complex cation with twofold rotational symmetry and two nitrate anions. The CoII atom has a distorted octa­hedral geometry with the basal plane occupied by two 1,10-phenanthroline-5,6-dione N atoms and two aqua O atoms, with the other two aqua ligands in axial positions. The aqua ligands are involved in extensive hydrogen bonding to nitrate and 1,10-phenanthroline-5,6-dione O atoms.

Related literature

For related complexes of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999 [triangle]); Fox et al. (1991 [triangle]); Onuegbu et al. (2007 [triangle]); Paw & Eisenberg (1997 [triangle]); Ruiz et al. (1999 [triangle]); Shavaleev et al. (2003 [triangle]). For the structures of the related phenanthroline and phendione derivatives of cobalt(II), see: Liu et al. (2008 [triangle]); Rubin-Preminger et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m653-scheme1.jpg

Experimental

Crystal data

  • [Co(C12H6N2O2)(H2O)4](NO3)2
  • M r = 465.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m653-efi1.jpg
  • a = 12.7978 (12) Å
  • b = 10.6388 (10) Å
  • c = 13.0989 (12) Å
  • β = 105.248 (2)°
  • V = 1720.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 295 K
  • 0.18 × 0.14 × 0.13 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.830, T max = 0.873
  • 4509 measured reflections
  • 1695 independent reflections
  • 1549 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.138
  • S = 1.04
  • 1695 reflections
  • 132 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017826/at2784sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017826/at2784Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Jiangxi Science and Technology Normal University for supporting this study.

supplementary crystallographic information

Comment

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties. Though phendione usually binds to metals through the imine N atoms (Onuegbu et al., 2007), in some cases both the N and O donors are used simultaneously (Calderazzo et al., 1999; Fox et al., 1991; Paw & Eisenberg, 1997; Ruiz et al., 1999; Shavaleev et al., 2003). In this paper we report the synthesis and characterization of the title compound, [CoL(H2O)4].(NO3)2 (L = 1,10-phenanthroline-5,6-dione).

The molecular structure of the title compound, shown in Fig. 1, is made up of a [CoL(H2O)4]2+ cation and two nitrate anions, which the cations have twofold rotational symmetry. The cobalt atom is coordinated to the two N atoms of a phendione ligand and four aqua ligands to form distorted octahedral geometry. The C=O bond length in the phendione ligand [1.208 (6) Å] is comparable to those observed in other complexes of phendione (Allen et al., 1987). The Co—N bond lengths [2.121 (3) Å] are similar to those values in related phenanthroline and phendione derivatives of cobalt(II) (Liu et al., 2008; Rubin-Preminger et al., 2008).

In addition to the strong O—H···O hydrogen bonds formed by the water ligands to both the nitrate and phendione O atoms, there are π-π stacking interactions between adjacent phendione ligands [perpendicular interplanar distance 3.582 (1) Å and centroid-to-centroid distance 3.823 (1) Å] (Fig. 2).

Experimental

A solution of cobalt(II) nitrate hexahydrate (29.1 mg, 0.10 mmol) and phendione (21.0 mg, 0.10 mmol) in methanol (8 ml) was stirred for 2 h. After filtering, the filtrate was left at room temperature for about one week and purple, block-like crystals of the title compound appeared [yield: 18 mg (39%)].

Refinement

The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The O—H distances of water were refined with idealized values of 0.85 Å. The aromatic H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, Uiso=1.2Ueqeq (C).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hand H atoms are drawn as spheres of arbitrary radius. [Symmetry code, A: 1-x, y, 1/2-z].
Fig. 2.
Packing diagram of the title structure, showing the intermolecular O—H···O hydrogen bonds as dashed lines.

Crystal data

[Co(C12H6N2O2)(H2O)4](NO3)2F(000) = 948
Mr = 465.20Dx = 1.796 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2754 reflections
a = 12.7978 (12) Åθ = 2.5–26.8°
b = 10.6388 (10) ŵ = 1.08 mm1
c = 13.0989 (12) ÅT = 295 K
β = 105.248 (2)°Block, purple
V = 1720.7 (3) Å30.18 × 0.14 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer1695 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.830, Tmax = 0.873k = −5→13
4509 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.071P)2 + 5.1444P] where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.68 e Å3
12 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.25979 (6)0.25000.0379 (3)
O1W0.5719 (3)0.3981 (3)0.3584 (3)0.0621 (10)
H1W10.58580.47260.34250.075*
H1W20.60360.38290.42280.075*
O10.4265 (4)−0.3399 (4)0.1544 (5)0.1088 (17)
O2W0.3649 (3)0.2686 (3)0.3112 (3)0.0554 (9)
H2W10.30180.23700.29980.066*
H2W20.33760.34070.31490.066*
O20.2233 (3)0.0263 (4)0.2267 (3)0.0784 (12)
O30.1111 (4)0.0285 (6)0.0756 (4)0.107 (2)
O40.1792 (4)0.2017 (5)0.1484 (4)0.0996 (18)
N10.4417 (3)0.1042 (3)0.1501 (3)0.0394 (8)
N20.1708 (3)0.0851 (5)0.1490 (3)0.0649 (13)
C10.3828 (4)0.1087 (6)0.0491 (4)0.0585 (12)
H10.36460.18690.01760.070*
C20.3481 (5)0.0028 (7)−0.0099 (4)0.0761 (15)
H20.30860.0097−0.08020.091*
C30.3716 (5)−0.1113 (6)0.0347 (5)0.0735 (14)
H30.3470−0.1836−0.00400.088*
C40.4336 (4)−0.1200 (4)0.1406 (4)0.0515 (11)
C50.4673 (3)−0.0087 (4)0.1946 (3)0.0353 (8)
C60.4594 (3)−0.2412 (4)0.1964 (4)0.0679 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0443 (5)0.0219 (4)0.0489 (5)0.0000.0149 (4)0.000
O1W0.094 (3)0.0341 (16)0.065 (2)−0.0210 (17)0.0333 (19)−0.0165 (15)
O10.133 (4)0.047 (2)0.169 (4)−0.030 (2)0.080 (3)−0.043 (2)
O2W0.0501 (18)0.0530 (19)0.069 (2)0.0035 (14)0.0271 (17)0.0139 (16)
O20.075 (3)0.090 (3)0.065 (2)0.006 (2)0.010 (2)0.033 (2)
O30.092 (3)0.166 (6)0.058 (3)−0.050 (3)0.011 (2)0.001 (3)
O40.079 (3)0.089 (3)0.125 (4)−0.014 (3)0.016 (3)0.063 (3)
N10.0454 (18)0.0375 (18)0.0322 (16)−0.0019 (15)0.0046 (14)0.0049 (14)
N20.048 (2)0.092 (4)0.054 (2)−0.014 (2)0.0108 (19)0.027 (2)
C10.052 (2)0.079 (3)0.039 (2)−0.004 (2)0.0033 (18)0.010 (2)
C20.066 (3)0.117 (4)0.042 (2)−0.025 (3)0.007 (2)−0.015 (2)
C30.074 (3)0.090 (3)0.062 (3)−0.036 (3)0.028 (2)−0.041 (2)
C40.060 (3)0.047 (2)0.057 (2)−0.0194 (19)0.0323 (19)−0.0230 (18)
C50.0425 (19)0.0318 (18)0.0342 (19)−0.0051 (15)0.0143 (16)−0.0032 (14)
C60.083 (3)0.036 (2)0.104 (4)−0.012 (2)0.059 (3)−0.0202 (19)

Geometric parameters (Å, °)

Co1—O1W2.084 (3)O4—N21.245 (7)
Co1—O1Wi2.084 (3)N1—C51.338 (5)
Co1—O2W2.091 (3)N1—C11.340 (5)
Co1—O2Wi2.091 (3)C1—C21.372 (9)
Co1—N12.121 (3)C1—H10.9300
Co1—N1i2.121 (3)C2—C31.346 (10)
O1W—H1W10.8500C2—H20.9300
O1W—H1W20.8502C3—C41.408 (8)
O1—C61.208 (6)C3—H30.9300
O2W—H2W10.8501C4—C51.388 (6)
O2W—H2W20.8500C4—C61.476 (7)
O2—N21.232 (6)C5—C5i1.473 (8)
O3—N21.218 (6)C6—C6i1.511 (10)
O1W—Co1—O1Wi90.1 (2)C1—N1—Co1126.6 (3)
O1W—Co1—O2W88.21 (14)O3—N2—O2119.6 (6)
O1Wi—Co1—O2W88.18 (14)O3—N2—O4121.7 (5)
O1W—Co1—O2Wi88.18 (14)O2—N2—O4118.7 (5)
O1Wi—Co1—O2Wi88.21 (14)N1—C1—C2122.7 (5)
O2W—Co1—O2Wi174.89 (19)N1—C1—H1118.7
O1W—Co1—N1173.05 (14)C2—C1—H1118.7
O1Wi—Co1—N196.32 (15)C3—C2—C1119.6 (5)
O2W—Co1—N194.55 (14)C3—C2—H2120.2
O2Wi—Co1—N189.44 (13)C1—C2—H2120.2
O1W—Co1—N1i96.32 (15)C2—C3—C4119.4 (5)
O1Wi—Co1—N1i173.05 (14)C2—C3—H3120.3
O2W—Co1—N1i89.44 (13)C4—C3—H3120.3
O2Wi—Co1—N1i94.55 (14)C5—C4—C3117.7 (5)
N1—Co1—N1i77.36 (18)C5—C4—C6119.6 (4)
Co1—O1W—H1W1125.1C3—C4—C6122.7 (4)
Co1—O1W—H1W2123.5N1—C5—C4122.4 (4)
H1W1—O1W—H1W2110.1N1—C5—C5i116.1 (2)
Co1—O2W—H2W1139.2C4—C5—C5i121.5 (3)
Co1—O2W—H2W2117.1O1—C6—C4121.8 (5)
H2W1—O2W—H2W289.0O1—C6—C6i119.7 (4)
C5—N1—C1118.2 (4)C4—C6—C6i118.0 (3)
C5—N1—Co1115.2 (2)
O1Wi—Co1—N1—C5−176.8 (3)C2—C3—C4—C6177.7 (5)
O2W—Co1—N1—C5−88.2 (3)C1—N1—C5—C4−1.0 (6)
O2Wi—Co1—N1—C595.0 (3)Co1—N1—C5—C4178.8 (3)
N1i—Co1—N1—C50.2 (2)C1—N1—C5—C5i179.6 (4)
O1Wi—Co1—N1—C12.9 (4)Co1—N1—C5—C5i−0.6 (5)
O2W—Co1—N1—C191.6 (4)C3—C4—C5—N10.8 (6)
O2Wi—Co1—N1—C1−85.2 (4)C6—C4—C5—N1−176.5 (4)
N1i—Co1—N1—C1180.0 (5)C3—C4—C5—C5i−179.8 (5)
C5—N1—C1—C2−0.1 (7)C6—C4—C5—C5i2.9 (7)
Co1—N1—C1—C2−179.8 (4)C5—C4—C6—O1175.7 (3)
N1—C1—C2—C31.3 (9)C3—C4—C6—O1−1.4 (6)
C1—C2—C3—C4−1.5 (9)C5—C4—C6—C6i−12.2 (6)
C2—C3—C4—C50.5 (8)C3—C4—C6—C6i170.7 (4)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O40.852.212.834 (6)130
O2W—H2W2···O2ii0.852.142.957 (6)161
O1W—H1W1···O1iii0.852.002.793 (5)154
O1W—H1W2···O3iv0.852.192.864 (6)136

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, y+1, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2784).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.
  • Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem.30, 2895–2899.
  • Liu, G.-X., Xu, H. & Ren, X.-M. (2008). Z. Anorg. Allg. Chem.634, 927–930.
  • Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.
  • Paw, W. & Eisenberg, R. (1997). Inorg. Chem.36, 2287–2293. [PubMed]
  • Rubin-Preminger, J. M., Kozlov, L. & Goldberg, I. (2008). Acta Cryst. C64, m83–m86. [PubMed]
  • Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun.2, 521–523.
  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134–1135. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography