PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m666.
Published online 2009 May 20. doi:  10.1107/S1600536809017978
PMCID: PMC2969729

Aqua­bis(2-amino-1,3-thia­zole-4-acetato-κ2 O,N 3)nickel(II)

Abstract

In the crystal structure of the title compound, [Ni(C5H5N2O2S)2(H2O)], the NiII cation is located on a twofold rotation axis and chelated by two 2-amino-1,3-thia­zole-4-acetate (ata) anions in the basal coordination plane; a water mol­ecule located on the same twofold rotation axis completes the distorted square-pyramidal coordination geometry. Inter­molecular O—H(...)O and N—H(...)O hydrogen bonding, as well as π–π stacking between parallel thia­zole rings [centroid–centroid distance 3.531 (8) Å], helps to stabilize the crystal structure.

Related literature

For general background to the potential use of discrete and polymeric metal-organic complexes as functional materials in catalysis, mol­ecular recognition, separation and non-linear optics, see: Batten & Robson (1998 [triangle]); Fujita et al. (1994 [triangle]); Han et al. (2008 [triangle]); Wu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m666-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H5N2O2S)2(H2O)]
  • M r = 391.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m666-efi2.jpg
  • a = 12.0875 (12) Å
  • b = 9.1278 (9) Å
  • c = 12.7715 (12) Å
  • β = 95.1190 (10)°
  • V = 1403.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.71 mm−1
  • T = 293 K
  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.821, T max = 0.904
  • 3487 measured reflections
  • 1231 independent reflections
  • 1119 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.065
  • S = 1.01
  • 1231 reflections
  • 102 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017978/xu2518sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017978/xu2518Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Natural Science Foundation of Hubei Province of China (2008CDB030) and the Important Project of Hubei Provincial Education Office (Z20091301).

supplementary crystallographic information

Comment

The rational design and synthesis of novel discrete and polymeric metal-organic complexes have attracted intense interest owing to the realisation of their potential for use as functional materials in catalysis, molecular recognition, separation, and nonlinear optics (Batten & Robson, 1998; Fujita et al., 1994). As for the construction of these inorganic/organic hybrid materials, carboxylate ligands have proven to be an efficacious choice (Wu et al., 2001). The employment of multifunctional ligands bearing both anionic and neutral donor atoms, such as nicotinate, isonicotinate, and various pyridinedicarboxylates, has resulted in the preparation of many functional coordination polymers, some with intriguing optical or gas sorption properties (Han et al., 2008). Herein we report the hydrothermal synthesis, structural characterization of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The NiII ion is located on a twofold rotation axis and has a slightly distorted square-pyramidal geometry formed by two oxygen atoms, two nitrogen atoms from ata ligands and one coordinated water molecules (Table 1). The amido N atoms forms N—H···O hydrogen bonds with carboxylate O atoms, linking the molecules into one dimentional chains, which are then linked into a two-dimensional sheet by aromatic π-π stacking between S1-thiazole and S1i-thiazole [symmetry code: (i) -x, 1 - y, 1 - z] rings [centroid–centroid distance 3.531 (8) Å]. Furthermore, the two-dimensional layers are extended to a three-dimensional supramolecular structure by O—H···O hydrogen bonds (Table 2).

Experimental

A mixture of Ni(CH3COOH)2.4H2O (0.025 g, 0.1 mmol), 2-amino-4-thiazoleacetic acid (0.0316 g, 0.2 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by a aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 d. Green crystals were obtained on cooling to room temperature.

Refinement

H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93, with Uiso(H) = 1.2Ueq(C); O—H = 0.82 and N—H = 0.86 Å, Uiso(H)=1.5Ueq(O,N).

Figures

Fig. 1.
The molecular structure of the title compound with thermal ellipsoids plotted at 50% probability [symmetry code: (i) -x, y, -z + 1/2].

Crystal data

[Ni(C5H5N2O2S)2(H2O)]F(000) = 800
Mr = 391.07Dx = 1.851 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2106 reflections
a = 12.0875 (12) Åθ = 2.8–25.0°
b = 9.1278 (9) ŵ = 1.71 mm1
c = 12.7715 (12) ÅT = 293 K
β = 95.119 (1)°Prism, green
V = 1403.5 (2) Å30.12 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1231 independent reflections
Radiation source: fine-focus sealed tube1119 reflections with I > 2σ(I)
graphiteRint = 0.014
CCD Profile fitting scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.821, Tmax = 0.904k = −5→10
3487 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.034P)2 + 2.301P] where P = (Fo2 + 2Fc2)/3
1231 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.69428 (4)0.25000.02321 (14)
N10.10680 (18)0.7919 (2)0.49121 (17)0.0423 (6)
H1A0.14280.79760.43630.051*
H1B0.13410.82970.54960.051*
N2−0.04038 (14)0.6630 (2)0.40062 (14)0.0264 (4)
O1−0.16405 (12)0.68137 (17)0.20264 (12)0.0314 (4)
O2−0.33123 (12)0.5835 (2)0.19153 (12)0.0369 (4)
O30.00000.9133 (2)0.25000.0401 (6)
H30.05700.94330.22700.060*
C1−0.23701 (16)0.5998 (2)0.23761 (16)0.0254 (5)
C2−0.20703 (19)0.5149 (3)0.33761 (18)0.0336 (5)
H2A−0.27510.48200.36500.040*
H2B−0.16570.42830.32040.040*
C30.00918 (19)0.7248 (3)0.48595 (17)0.0295 (5)
C4−0.14006 (17)0.5971 (2)0.42235 (17)0.0280 (5)
C5−0.16604 (19)0.6117 (3)0.52138 (18)0.0364 (6)
H5−0.22990.57390.54680.044*
S1−0.06560 (5)0.71004 (8)0.59589 (5)0.03934 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0186 (2)0.0286 (2)0.0224 (2)0.0000.00139 (15)0.000
N10.0395 (12)0.0586 (15)0.0285 (11)−0.0167 (11)0.0017 (9)−0.0117 (10)
N20.0241 (9)0.0319 (10)0.0229 (9)−0.0007 (8)0.0009 (7)−0.0001 (8)
O10.0225 (8)0.0422 (9)0.0291 (9)−0.0047 (7)0.0005 (6)0.0090 (7)
O20.0217 (8)0.0551 (11)0.0327 (9)−0.0077 (7)−0.0033 (6)0.0127 (8)
O30.0262 (12)0.0300 (12)0.0666 (17)0.0000.0190 (12)0.000
C10.0217 (11)0.0292 (11)0.0252 (11)0.0004 (9)0.0016 (9)−0.0006 (9)
C20.0290 (11)0.0352 (13)0.0354 (13)−0.0065 (10)−0.0038 (10)0.0099 (11)
C30.0294 (12)0.0343 (13)0.0246 (12)0.0031 (10)0.0014 (9)−0.0006 (10)
C40.0239 (10)0.0314 (12)0.0281 (12)0.0023 (9)−0.0004 (9)0.0071 (10)
C50.0278 (12)0.0504 (15)0.0311 (13)0.0004 (11)0.0039 (10)0.0096 (12)
S10.0384 (4)0.0570 (4)0.0230 (3)0.0039 (3)0.0044 (3)−0.0030 (3)

Geometric parameters (Å, °)

Ni1—O12.0243 (15)O2—C11.243 (3)
Ni1—O1i2.0243 (15)O3—H30.8200
Ni1—O31.999 (2)C1—C21.510 (3)
Ni1—N22.0465 (18)C2—C41.494 (3)
Ni1—N2i2.0465 (18)C2—H2A0.9700
N1—C31.326 (3)C2—H2B0.9700
N1—H1A0.8600C3—S11.742 (2)
N1—H1B0.8600C4—C51.337 (3)
N2—C31.322 (3)C5—S11.726 (3)
N2—C41.397 (3)C5—H50.9300
O1—C11.266 (3)
O3—Ni1—O193.34 (5)O2—C1—C2118.64 (19)
O3—Ni1—O1i93.34 (5)O1—C1—C2118.57 (18)
O1—Ni1—O1i173.33 (9)C4—C2—C1115.36 (19)
O3—Ni1—N298.02 (5)C4—C2—H2A108.4
O1—Ni1—N287.90 (7)C1—C2—H2A108.4
O1i—Ni1—N291.17 (7)C4—C2—H2B108.4
O3—Ni1—N2i98.02 (5)C1—C2—H2B108.4
O1—Ni1—N2i91.17 (7)H2A—C2—H2B107.5
O1i—Ni1—N2i87.90 (7)N2—C3—N1125.1 (2)
N2—Ni1—N2i163.96 (11)N2—C3—S1113.70 (17)
C3—N1—H1A120.0N1—C3—S1121.23 (17)
C3—N1—H1B120.0C5—C4—N2115.1 (2)
H1A—N1—H1B120.0C5—C4—C2125.3 (2)
C3—N2—C4110.83 (19)N2—C4—C2119.58 (19)
C3—N2—Ni1125.93 (16)C4—C5—S1111.14 (18)
C4—N2—Ni1121.96 (14)C4—C5—H5124.4
C1—O1—Ni1128.58 (14)S1—C5—H5124.4
Ni1—O3—H3109.5C5—S1—C389.19 (11)
O2—C1—O1122.8 (2)
O3—Ni1—N2—C3−50.65 (19)C4—N2—C3—N1177.7 (2)
O1—Ni1—N2—C3−143.73 (19)Ni1—N2—C3—N1−15.1 (3)
O1i—Ni1—N2—C342.88 (19)C4—N2—C3—S1−1.8 (2)
N2i—Ni1—N2—C3129.35 (19)Ni1—N2—C3—S1165.31 (11)
O3—Ni1—N2—C4115.15 (16)C3—N2—C4—C51.4 (3)
O1—Ni1—N2—C422.08 (17)Ni1—N2—C4—C5−166.37 (17)
O1i—Ni1—N2—C4−151.32 (17)C3—N2—C4—C2−177.3 (2)
N2i—Ni1—N2—C4−64.85 (16)Ni1—N2—C4—C215.0 (3)
O3—Ni1—O1—C1−135.01 (18)C1—C2—C4—C5126.8 (3)
N2—Ni1—O1—C1−37.09 (19)C1—C2—C4—N2−54.7 (3)
N2i—Ni1—O1—C1126.88 (19)N2—C4—C5—S1−0.3 (3)
Ni1—O1—C1—O2−167.76 (16)C2—C4—C5—S1178.27 (18)
Ni1—O1—C1—C210.2 (3)C4—C5—S1—C3−0.6 (2)
O2—C1—C2—C4−140.5 (2)N2—C3—S1—C51.44 (19)
O1—C1—C2—C441.5 (3)N1—C3—S1—C5−178.2 (2)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.816 (3)140
N1—H1B···O2ii0.861.992.839 (3)170
O3—H3···O2iii0.821.942.7211 (19)158

Symmetry codes: (i) −x, y, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2518).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc.116, 1151–1152.
  • Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. III (2008). J. Am. Chem. Soc.130, 11580–11581. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Z.-Y., Xu, D.-J. & Feng, Z.-X. (2001). Polyhedron, 20, 281–284.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography