PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1367.
Published online 2009 May 23. doi:  10.1107/S1600536809018753
PMCID: PMC2969726

2-Chloro-N-(2,4-dichloro­phen­yl)­acetamide

Abstract

The structure of the title compound, C8H6Cl3NO, contains two mol­ecules in the asymmetric unit. In each independent mol­ecule, the conformation of the N—H bond is almost syn to the ortho-chloro substituent and the conformation of the C=O bond is anti to the N—H bond. The mol­ecules in the crystal structure are linked into supra­molecular chains through N—H(...)O hydrogen bonding along the a axis.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007 [triangle]); Pies et al. (1971 [triangle]). For related structures, see: Gowda, Foro & Fuess (2008 [triangle]); Gowda, Kožíšek et al. (2008 [triangle]); Gowda et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1367-scheme1.jpg

Experimental

Crystal data

  • C8H6Cl3NO
  • M r = 238.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1367-efi1.jpg
  • a = 4.7457 (5) Å
  • b = 12.9266 (9) Å
  • c = 31.879 (4) Å
  • β = 90.12 (1)°
  • V = 1955.6 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 299 K
  • 0.48 × 0.05 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur single-crystal diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.674, T max = 0.957
  • 7393 measured reflections
  • 3590 independent reflections
  • 1475 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080
  • wR(F 2) = 0.196
  • S = 0.91
  • 3590 reflections
  • 241 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018753/tk2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018753/tk2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extension of his research fellowship.

supplementary crystallographic information

Comment

As part of a study into the effect of ring- and side-chain substitutions on the solid-state structures of aromatic amides (Gowda, Foro & Fuess, 2008; Gowda, Kožíšek et al., 2008; Gowda et al., 2009), in the present work the structure of the title compound (I) is described. There are two independent molecules in the asymmetric unit of (I), Fig. 1. The conformation of the N—H bond in each independent molecule is almost syn to the ortho-chloro substituent, similar to the syn conformation observed with respect to both the 2-chloro and 3-chloro substituents in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2008a). The conformation of the C=O bond is anti to the N—H bond, also similar to that observed in 2-chloro-N-(2,3-dichlorophenyl)acetamide. The N1–H1N···O1 and N2–H2N···O2 hydrogen bonding pack the molecules into supramolecular chains aligned along the a direction (Table 1, Fig. 2).

Experimental

Compound (I) was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR and NQR spectra (Shilpa & Gowda, 2007; Pies et al., 1971). Single crystals of were grown by the slow evaporation of an ethanol solution of (I) held at room temperature.

Refinement

The N-bound H atoms were located in difference map and their positional parameters were refined freely [N—H = 0.77 (7)–0.91 (7) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

To improve considerably the values of R1, wR2, and the GoF, eight reflections (-1 8 3, 0 10 4, 1 5 3, 2 5 0, 2 5 1, 2 5 3, 4 5 0, 1 1 28) were omitted from the final refinement.

Figures

Fig. 1.
Molecular structures of the two independent molecules in (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C8H6Cl3NOF(000) = 960
Mr = 238.49Dx = 1.620 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1466 reflections
a = 4.7457 (5) Åθ = 2.5–27.8°
b = 12.9266 (9) ŵ = 0.89 mm1
c = 31.879 (4) ÅT = 299 K
β = 90.12 (1)°Needle, colourless
V = 1955.6 (3) Å30.48 × 0.05 × 0.05 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur single-crystal diffractometer with a Sapphire CCD detector3590 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
graphiteRint = 0.077
Rotation method data acquisition using ω and [var phi] scansθmax = 25.3°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −5→4
Tmin = 0.674, Tmax = 0.957k = −15→11
7393 measured reflectionsl = −38→38

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 0.91w = 1/[σ2(Fo2) + (0.0867P)2] where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.005
241 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.5403 (4)0.71319 (16)0.00042 (6)0.0507 (6)
Cl2−0.1002 (5)0.42476 (17)0.07378 (7)0.0699 (8)
Cl30.0189 (5)1.14606 (18)0.06668 (10)0.0935 (9)
O1−0.1586 (10)0.9317 (4)0.06073 (19)0.0672 (18)
N10.2740 (11)0.8593 (5)0.06055 (18)0.0362 (16)
H1N0.460 (14)0.876 (5)0.0583 (19)0.043*
C10.1840 (14)0.7560 (5)0.0644 (2)0.0309 (17)
C20.2935 (13)0.6804 (6)0.0379 (2)0.0330 (18)
C30.2098 (15)0.5774 (6)0.0412 (2)0.0393 (19)
H30.28620.52700.02380.047*
C40.0105 (16)0.5522 (6)0.0710 (2)0.047 (2)
C5−0.0950 (15)0.6242 (7)0.0982 (2)0.046 (2)
H5−0.22430.60490.11860.055*
C6−0.0095 (15)0.7241 (6)0.0950 (2)0.044 (2)
H6−0.08100.77270.11370.053*
C70.0950 (14)0.9405 (6)0.0596 (2)0.0386 (19)
C80.2440 (16)1.0429 (6)0.0563 (3)0.063 (3)
H8A0.32081.05050.02830.075*
H8B0.39971.04440.07610.075*
Cl41.0368 (4)0.28731 (17)0.25087 (6)0.0545 (6)
Cl50.4118 (6)0.60945 (19)0.20155 (8)0.0830 (8)
Cl60.4903 (4)−0.11251 (17)0.16628 (7)0.0586 (6)
O20.3241 (10)0.1017 (4)0.1770 (2)0.0701 (18)
N20.7526 (12)0.1738 (5)0.1816 (2)0.0422 (18)
H2N0.912 (15)0.163 (6)0.181 (2)0.051*
C90.6701 (14)0.2773 (6)0.1861 (2)0.0335 (17)
C100.7879 (14)0.3385 (6)0.2170 (2)0.0381 (19)
C110.7131 (15)0.4406 (6)0.2217 (2)0.045 (2)
H110.79580.48110.24250.054*
C120.5141 (17)0.4817 (6)0.1952 (3)0.049 (2)
C130.3952 (15)0.4215 (7)0.1645 (3)0.049 (2)
H130.25950.44990.14690.059*
C140.4723 (15)0.3210 (6)0.1595 (2)0.044 (2)
H140.39220.28170.13810.052*
C150.5757 (15)0.0933 (6)0.1774 (2)0.0374 (19)
C160.7204 (15)−0.0104 (6)0.1735 (3)0.062 (3)
H16A0.8307−0.02290.19860.074*
H16B0.8496−0.00790.15000.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0426 (12)0.0541 (13)0.0555 (13)−0.0074 (10)0.0135 (9)−0.0047 (11)
Cl20.0955 (19)0.0486 (15)0.0657 (16)−0.0266 (12)−0.0015 (13)0.0074 (12)
Cl30.0723 (18)0.0432 (15)0.165 (3)0.0070 (13)0.0398 (16)0.0038 (16)
O10.018 (3)0.043 (4)0.140 (6)0.002 (3)0.005 (3)−0.001 (3)
N10.016 (3)0.034 (4)0.058 (4)−0.007 (3)0.001 (3)0.000 (3)
C10.029 (4)0.030 (4)0.034 (4)0.006 (3)−0.006 (3)−0.002 (4)
C20.029 (4)0.045 (5)0.025 (4)0.000 (3)0.003 (3)0.006 (4)
C30.040 (5)0.028 (5)0.050 (5)0.002 (4)0.003 (4)−0.004 (4)
C40.049 (5)0.051 (6)0.040 (5)−0.012 (4)−0.012 (4)0.004 (4)
C50.037 (5)0.055 (6)0.046 (5)−0.015 (4)0.013 (4)0.002 (5)
C60.047 (5)0.050 (6)0.036 (5)0.004 (4)0.012 (4)−0.007 (4)
C70.021 (4)0.035 (5)0.060 (5)0.003 (4)−0.001 (4)−0.008 (4)
C80.033 (5)0.043 (5)0.113 (8)−0.002 (4)0.007 (4)0.001 (5)
Cl40.0407 (12)0.0626 (15)0.0602 (13)0.0013 (10)−0.0087 (9)−0.0003 (12)
Cl50.106 (2)0.0461 (15)0.097 (2)0.0256 (14)−0.0060 (15)−0.0084 (14)
Cl60.0516 (13)0.0489 (13)0.0753 (16)−0.0065 (11)−0.0020 (11)−0.0133 (12)
O20.020 (3)0.047 (4)0.143 (6)0.010 (3)−0.003 (3)−0.013 (4)
N20.020 (3)0.042 (4)0.064 (4)0.002 (3)0.000 (3)−0.003 (3)
C90.028 (4)0.036 (5)0.037 (4)0.000 (3)0.008 (3)0.001 (4)
C100.031 (4)0.043 (5)0.041 (5)−0.001 (4)−0.001 (3)0.001 (4)
C110.045 (5)0.043 (5)0.047 (5)−0.003 (4)0.000 (4)−0.008 (4)
C120.054 (6)0.044 (5)0.051 (5)0.012 (4)0.011 (4)0.001 (5)
C130.043 (5)0.054 (6)0.049 (5)0.007 (4)−0.007 (4)0.006 (5)
C140.043 (5)0.041 (5)0.046 (5)0.005 (4)−0.004 (4)0.004 (4)
C150.022 (4)0.045 (5)0.045 (5)0.002 (4)0.001 (3)−0.005 (4)
C160.035 (5)0.040 (5)0.110 (8)−0.004 (4)−0.001 (5)−0.003 (5)

Geometric parameters (Å, °)

Cl1—C21.728 (7)Cl4—C101.730 (7)
Cl2—C41.731 (8)Cl5—C121.733 (8)
Cl3—C81.740 (8)Cl6—C161.728 (8)
O1—C71.209 (7)O2—C151.199 (7)
N1—C71.350 (9)N2—C151.344 (9)
N1—C11.407 (9)N2—C91.401 (9)
N1—H1N0.91 (7)N2—H2N0.77 (7)
C1—C21.392 (9)C9—C101.381 (9)
C1—C61.403 (9)C9—C141.385 (9)
C2—C31.393 (10)C10—C111.376 (10)
C3—C41.381 (10)C11—C121.373 (10)
C3—H30.9300C11—H110.9300
C4—C51.367 (11)C12—C131.371 (10)
C5—C61.358 (10)C13—C141.360 (11)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.505 (11)C15—C161.511 (10)
C8—H8A0.9700C16—H16A0.9700
C8—H8B0.9700C16—H16B0.9700
C7—N1—C1123.3 (6)C15—N2—C9125.1 (6)
C7—N1—H1N115 (4)C15—N2—H2N118 (6)
C1—N1—H1N122 (4)C9—N2—H2N117 (6)
C2—C1—C6117.4 (7)C10—C9—C14118.4 (7)
C2—C1—N1119.9 (6)C10—C9—N2120.5 (6)
C6—C1—N1122.6 (6)C14—C9—N2121.1 (6)
C1—C2—C3121.2 (6)C11—C10—C9121.6 (7)
C1—C2—Cl1120.1 (6)C11—C10—Cl4118.3 (6)
C3—C2—Cl1118.7 (6)C9—C10—Cl4120.1 (6)
C4—C3—C2118.2 (7)C12—C11—C10118.8 (7)
C4—C3—H3120.9C12—C11—H11120.6
C2—C3—H3120.9C10—C11—H11120.6
C5—C4—C3121.8 (7)C13—C12—C11120.1 (7)
C5—C4—Cl2120.3 (7)C13—C12—Cl5120.6 (6)
C3—C4—Cl2117.9 (7)C11—C12—Cl5119.3 (7)
C6—C5—C4119.4 (7)C14—C13—C12121.1 (7)
C6—C5—H5120.3C14—C13—H13119.4
C4—C5—H5120.3C12—C13—H13119.4
C5—C6—C1121.8 (7)C13—C14—C9120.0 (7)
C5—C6—H6119.1C13—C14—H14120.0
C1—C6—H6119.1C9—C14—H14120.0
O1—C7—N1123.5 (7)O2—C15—N2123.6 (7)
O1—C7—C8123.5 (7)O2—C15—C16122.1 (7)
N1—C7—C8112.9 (6)N2—C15—C16114.3 (6)
C7—C8—Cl3111.9 (5)C15—C16—Cl6113.6 (5)
C7—C8—H8A109.2C15—C16—H16A108.8
Cl3—C8—H8A109.2Cl6—C16—H16A108.8
C7—C8—H8B109.2C15—C16—H16B108.8
Cl3—C8—H8B109.2Cl6—C16—H16B108.8
H8A—C8—H8B107.9H16A—C16—H16B107.7
C7—N1—C1—C2132.9 (7)C15—N2—C9—C10132.3 (8)
C7—N1—C1—C6−48.9 (10)C15—N2—C9—C14−48.6 (10)
C6—C1—C2—C31.3 (9)C14—C9—C10—C110.0 (10)
N1—C1—C2—C3179.6 (6)N2—C9—C10—C11179.2 (7)
C6—C1—C2—Cl1−178.2 (5)C14—C9—C10—Cl4−179.8 (5)
N1—C1—C2—Cl10.1 (8)N2—C9—C10—Cl4−0.7 (9)
C1—C2—C3—C41.2 (10)C9—C10—C11—C120.7 (11)
Cl1—C2—C3—C4−179.4 (5)Cl4—C10—C11—C12−179.5 (6)
C2—C3—C4—C5−3.0 (11)C10—C11—C12—C13−0.5 (12)
C2—C3—C4—Cl2178.1 (5)C10—C11—C12—Cl5178.6 (6)
C3—C4—C5—C62.3 (11)C11—C12—C13—C14−0.5 (12)
Cl2—C4—C5—C6−178.9 (6)Cl5—C12—C13—C14−179.5 (6)
C4—C5—C6—C10.4 (11)C12—C13—C14—C91.3 (12)
C2—C1—C6—C5−2.1 (10)C10—C9—C14—C13−1.0 (11)
N1—C1—C6—C5179.7 (7)N2—C9—C14—C13179.9 (7)
C1—N1—C7—O1−2.1 (12)C9—N2—C15—O20.2 (12)
C1—N1—C7—C8178.6 (6)C9—N2—C15—C16−179.5 (7)
O1—C7—C8—Cl314.0 (11)O2—C15—C16—Cl62.5 (11)
N1—C7—C8—Cl3−166.8 (5)N2—C15—C16—Cl6−177.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (7)1.95 (7)2.851 (7)170 (6)
N2—H2N···O2i0.77 (7)2.11 (7)2.872 (7)168 (8)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2452).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o419. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949. [PMC free article] [PubMed]
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. [PMC free article] [PubMed]
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson.3, 147–176.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography