PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1343.
Published online 2009 May 20. doi:  10.1107/S1600536809017784
PMCID: PMC2969719

N,N′-(Phenyl­imino­dimethyl­ene)di­prop-2-enamide hemihydrate

Abstract

In the title compound, C14H17N3O2·0.5H2O, the asymmetric unit consists of an N,N′-(phenyl­imino­dimethyl­ene)diprop-2-enamide mol­ecule and one half-mol­ecule of water, with the O atom of the latter having 2 site symmetry. The supra­molecular architecture is framed by the inter­play of two-dimensional networks of both O—H(...)O and N—H(...)O inter­actions supported by C—H(...)O and edge-to-face C—H(...)π inter­actions.

Related literature

For a detailed description of Mannich bases and their applications, see: Friedrich et al. (1991 [triangle]); Bohme & Mannich (1955 [triangle]); Afsah et al. (2008 [triangle]); Terzioglu et al. (2006 [triangle]); Ravichandran et al. (2007 [triangle]); Pandeya et al. (2000 [triangle]). For hydrogen bonds, see: Desiraju & Steiner (1999 [triangle]); Jeffrey (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1343-scheme1.jpg

Experimental

Crystal data

  • C14H17N3O2·0.5H2O
  • M r = 268.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1343-efi1.jpg
  • a = 17.074 (2) Å
  • b = 9.8366 (15) Å
  • c = 16.316 (2) Å
  • V = 2740.3 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 90 K
  • 0.30 × 0.23 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler
  • Absorption correction: none
  • 9467 measured reflections
  • 5065 independent reflections
  • 3885 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.120
  • S = 1.02
  • 5065 reflections
  • 249 parameters
  • All H-atom parameters refined
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017784/lh2820sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017784/lh2820Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

The Mannich reaction is a three-component condensation in which a compound containing an active H atom (substrate) is allowed to react with an aldehyde or ketone and a primary or secondary amine with concomitant release of water to produce a new base known as a Mannich base, in which the active hydrogen is replaced by an aminomethyl group. The formation of both carbon-carbon and carbon-nitrogen bond in this aminomethylation process makes the Mannich reaction an extremely useful synthetic transformation. Mannich bases have wide application in the areas of pharmaceutics (Friedrich et al., 1991) and macromolecular chemistry (Bohme & Mannich, 1955; Afsah et al., 2008). Some Mannich bases have antimalarial, antiviral (Terzioglu et al., 2006) properties while some other act as antihistamines, anti-inflammatories (Ravichandran et al., 2007) and antimicrobials (Pandeya et al., 2000). The present investigation is aimed at the elucidation of the molecular and crystal structure of the title compound which was obtained by the Mannich condendation of aniline, formaldehyde and acrylamide.

The asymmetric unit of (I) consists of N,N-[(phenylimino)dimethanediyl]bisprop-2-enamide and half a water molecule (Fig. 1).

The crystal structure of (I) is stabilized by O—H···O, N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for O—H···O & N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). Each of N5—H5···O11 and C15—H15···O7 interactions generate a ring motif of graph set (Bernstein et al., 1995; Etter, 1990), S(8). An S(5) motif is formed by C4—H4A···O7. The Ow—Hw···O7i, N1—H1···O11ii and N5—H5···O11 interactions together generate an extended two dimensional network along the base vectors, [0 1 0] & [1 0 0] and through the plane (0 0 - 1). The supramolecular architecture is completed by the interplay of two edge to face C—H···π interactions (Table 1).

Experimental

7.1 g (0.1 mol) acrylamide and 10 ml (0.1M) of formaldehyde were dissolved in minimum amount of distilled water and the contents were mixed well to get a clear solution. 10 ml (0.1M) of aniline was added to the mixture in small installments with stirring. After 48 hr colorless solid was obtained which was washed with ethanol and dried at 343 K. The resulting organic compound was recrystallized from hot ethanol to yield the diffraction quality crystals of the title compound.

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters were freely refined.

Figures

Fig. 1.
The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The molecular packing viewed along the b-axis. Dashed lines represent the O—H···O, N—H···O and C—H···O interactions within the lattice.

Crystal data

C14H17N3O2·0.5H2ODx = 1.301 Mg m3
Mr = 268.31Melting point: 398 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 34434 reflections
a = 17.074 (2) Åθ = 2.5–33.0°
b = 9.8366 (15) ŵ = 0.09 mm1
c = 16.316 (2) ÅT = 90 K
V = 2740.3 (6) Å3Fragment, colorless
Z = 80.30 × 0.23 × 0.12 mm
F(000) = 1144

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
graphiteθmax = 33.0°, θmin = 2.7°
ω and [var phi] scansh = −26→26
9467 measured reflectionsk = −15→15
5065 independent reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.120All H-atom parameters refined
S = 1.02w = 1/[σ2(Fo2) + (0.0597P)2 + 0.7128P] where P = (Fo2 + 2Fc2)/3
5065 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.80007 (5)0.89440 (8)0.13232 (5)0.01594 (16)
C20.88056 (6)0.84769 (10)0.12071 (6)0.01569 (17)
N30.89921 (5)0.80690 (8)0.03825 (5)0.01545 (16)
C40.91579 (6)0.66584 (10)0.02225 (6)0.01665 (18)
N50.85082 (5)0.59623 (8)−0.01804 (5)0.01671 (16)
C60.85921 (6)0.52348 (9)−0.08750 (6)0.01635 (18)
O70.92364 (4)0.50903 (8)−0.12139 (5)0.02232 (17)
C80.78566 (6)0.46251 (11)−0.11941 (6)0.0210 (2)
C90.78569 (7)0.37886 (13)−0.18250 (7)0.0267 (2)
C100.73876 (5)0.80842 (9)0.13486 (5)0.01421 (17)
O110.74626 (4)0.68455 (7)0.12367 (4)0.01761 (15)
C120.66234 (6)0.87457 (10)0.15303 (6)0.01837 (19)
C130.59676 (6)0.80534 (12)0.16321 (7)0.0247 (2)
C140.90493 (5)0.90267 (10)−0.02424 (6)0.01502 (17)
C150.91823 (5)0.86297 (11)−0.10565 (6)0.01785 (19)
C160.92620 (6)0.96063 (12)−0.16649 (6)0.0226 (2)
C170.92139 (6)1.09817 (12)−0.14964 (7)0.0249 (2)
C180.90668 (6)1.13762 (11)−0.06939 (7)0.0229 (2)
C190.89752 (6)1.04206 (10)−0.00757 (7)0.01868 (19)
OW1.00000.37093 (12)−0.25000.0356 (3)
H10.7899 (9)0.9829 (15)0.1371 (9)0.028 (4)*
H2A0.8901 (7)0.7705 (14)0.1559 (8)0.018 (3)*
H2B0.9140 (7)0.9206 (14)0.1393 (8)0.015 (3)*
H4A0.9616 (8)0.6566 (13)−0.0140 (8)0.018 (3)*
H4B0.9274 (7)0.6225 (13)0.0743 (8)0.017 (3)*
H50.8046 (9)0.6058 (14)0.0045 (9)0.027 (3)*
H80.7378 (9)0.4864 (15)−0.0914 (10)0.035 (4)*
H9A0.7377 (8)0.3357 (15)−0.2005 (9)0.029 (4)*
H9B0.8348 (9)0.3542 (15)−0.2119 (10)0.036 (4)*
H120.6636 (9)0.9714 (16)0.1589 (10)0.034 (4)*
H13A0.5471 (8)0.8504 (15)0.1751 (8)0.027 (3)*
H13B0.5952 (10)0.7040 (19)0.1577 (11)0.045 (5)*
H150.9212 (7)0.7696 (15)−0.1208 (8)0.018 (3)*
H160.9353 (9)0.9338 (15)−0.2219 (9)0.031 (4)*
H170.9294 (9)1.1688 (16)−0.1936 (10)0.038 (4)*
H180.9027 (8)1.2309 (16)−0.0557 (9)0.029 (4)*
H190.8871 (8)1.0736 (14)0.0458 (9)0.022 (3)*
HW1.0232 (10)0.4232 (17)−0.2832 (11)0.048 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0168 (4)0.0121 (3)0.0189 (4)−0.0001 (3)0.0009 (3)−0.0017 (3)
C20.0163 (4)0.0169 (4)0.0138 (4)0.0001 (3)−0.0014 (3)−0.0017 (3)
N30.0195 (4)0.0131 (3)0.0137 (3)0.0013 (3)0.0007 (3)−0.0011 (3)
C40.0184 (4)0.0141 (4)0.0175 (4)0.0024 (3)−0.0011 (3)−0.0010 (3)
N50.0166 (4)0.0167 (4)0.0168 (4)−0.0006 (3)0.0038 (3)−0.0035 (3)
C60.0181 (4)0.0153 (4)0.0157 (4)0.0014 (3)0.0026 (3)−0.0010 (3)
O70.0176 (3)0.0259 (4)0.0235 (4)0.0004 (3)0.0054 (3)−0.0080 (3)
C80.0177 (4)0.0243 (5)0.0210 (5)−0.0002 (4)0.0027 (3)−0.0048 (4)
C90.0219 (5)0.0343 (6)0.0241 (5)0.0014 (4)−0.0020 (4)−0.0094 (4)
C100.0172 (4)0.0133 (4)0.0122 (4)−0.0002 (3)−0.0010 (3)0.0001 (3)
O110.0213 (3)0.0118 (3)0.0197 (3)0.0002 (2)0.0004 (3)−0.0009 (2)
C120.0191 (4)0.0148 (4)0.0212 (5)0.0011 (3)0.0008 (3)−0.0012 (3)
C130.0204 (5)0.0241 (5)0.0294 (5)−0.0018 (4)0.0037 (4)−0.0072 (4)
C140.0119 (4)0.0163 (4)0.0169 (4)−0.0010 (3)−0.0011 (3)0.0011 (3)
C150.0154 (4)0.0199 (5)0.0182 (4)0.0000 (3)0.0031 (3)0.0010 (4)
C160.0184 (4)0.0305 (6)0.0189 (5)−0.0014 (4)0.0038 (4)0.0055 (4)
C170.0208 (5)0.0264 (5)0.0274 (5)−0.0039 (4)0.0000 (4)0.0116 (4)
C180.0206 (5)0.0177 (5)0.0305 (6)−0.0034 (3)−0.0044 (4)0.0054 (4)
C190.0180 (4)0.0164 (4)0.0216 (5)−0.0016 (3)−0.0032 (3)−0.0002 (3)
OW0.0567 (8)0.0170 (5)0.0330 (7)0.0000.0289 (6)0.000

Geometric parameters (Å, °)

N1—C101.3465 (12)C10—O111.2387 (11)
N1—C21.4613 (13)C10—C121.4878 (14)
N1—H10.891 (15)C12—C131.3210 (15)
C2—N31.4397 (12)C12—H120.957 (16)
C2—H2A0.966 (13)C13—H13A0.976 (14)
C2—H2B0.966 (13)C13—H13B1.001 (19)
N3—C141.3915 (12)C14—C151.4030 (14)
N3—C41.4400 (12)C14—C191.4036 (14)
C4—N51.4599 (12)C15—C161.3880 (14)
C4—H4A0.984 (13)C15—H150.953 (14)
C4—H4B0.970 (13)C16—C171.3830 (17)
N5—C61.3480 (12)C16—H160.954 (15)
N5—H50.876 (15)C17—C181.3886 (17)
C6—O71.2394 (12)C17—H171.008 (16)
C6—C81.4859 (14)C18—C191.3876 (15)
C8—C91.3178 (15)C18—H180.947 (16)
C8—H80.966 (16)C19—H190.942 (14)
C9—H9A0.969 (14)OW—HW0.845 (17)
C9—H9B0.996 (16)
C10—N1—C2122.52 (8)H9A—C9—H9B117.4 (12)
C10—N1—H1117.3 (10)O11—C10—N1122.20 (9)
C2—N1—H1120.2 (10)O11—C10—C12123.38 (9)
N3—C2—N1114.64 (8)N1—C10—C12114.41 (8)
N3—C2—H2A107.4 (8)C13—C12—C10122.88 (9)
N1—C2—H2A109.2 (8)C13—C12—H12121.3 (9)
N3—C2—H2B111.7 (8)C10—C12—H12115.8 (9)
N1—C2—H2B106.4 (8)C12—C13—H13A121.8 (9)
H2A—C2—H2B107.3 (11)C12—C13—H13B121.6 (10)
C14—N3—C2120.77 (8)H13A—C13—H13B116.6 (13)
C14—N3—C4120.38 (8)N3—C14—C15121.10 (9)
C2—N3—C4118.78 (8)N3—C14—C19120.87 (9)
N3—C4—N5112.59 (8)C15—C14—C19118.03 (9)
N3—C4—H4A110.7 (7)C16—C15—C14120.02 (10)
N5—C4—H4A106.8 (7)C16—C15—H15118.5 (8)
N3—C4—H4B107.8 (8)C14—C15—H15121.5 (8)
N5—C4—H4B110.0 (8)C17—C16—C15121.95 (10)
H4A—C4—H4B108.8 (11)C17—C16—H16118.0 (9)
C6—N5—C4123.15 (8)C15—C16—H16120.1 (9)
C6—N5—H5120.4 (10)C16—C17—C18118.13 (10)
C4—N5—H5116.4 (9)C16—C17—H17121.7 (9)
O7—C6—N5122.03 (9)C18—C17—H17120.2 (9)
O7—C6—C8123.19 (9)C19—C18—C17121.10 (10)
N5—C6—C8114.78 (8)C19—C18—H18118.4 (9)
C9—C8—C6121.70 (9)C17—C18—H18120.5 (9)
C9—C8—H8121.4 (9)C18—C19—C14120.72 (10)
C6—C8—H8116.9 (9)C18—C19—H19118.1 (8)
C8—C9—H9A120.7 (9)C14—C19—H19121.2 (8)
C8—C9—H9B121.9 (9)
C10—N1—C2—N375.00 (12)N1—C10—C12—C13−175.46 (10)
N1—C2—N3—C1470.15 (11)C2—N3—C14—C15−175.96 (8)
N1—C2—N3—C4−112.95 (9)C4—N3—C14—C157.19 (13)
C14—N3—C4—N5−78.90 (10)C2—N3—C14—C194.02 (13)
C2—N3—C4—N5104.19 (10)C4—N3—C14—C19−172.83 (8)
N3—C4—N5—C6127.89 (10)N3—C14—C15—C16−177.94 (9)
C4—N5—C6—O71.15 (15)C19—C14—C15—C162.09 (13)
C4—N5—C6—C8−179.03 (9)C14—C15—C16—C17−0.07 (15)
O7—C6—C8—C95.99 (17)C15—C16—C17—C18−1.19 (16)
N5—C6—C8—C9−173.83 (11)C16—C17—C18—C190.39 (15)
C2—N1—C10—O11−3.45 (14)C17—C18—C19—C141.67 (15)
C2—N1—C10—C12175.89 (8)N3—C14—C19—C18177.14 (9)
O11—C10—C12—C133.88 (16)C15—C14—C19—C18−2.88 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5···O110.876 (15)2.318 (15)3.0476 (11)140.8 (12)
C4—H4A···O70.984 (13)2.366 (13)2.8089 (12)106.5 (9)
C15—H15···O70.953 (14)2.563 (14)3.4922 (14)165.1 (10)
OW—HW···O7i0.845 (17)1.990 (17)2.8193 (9)166.7 (16)
N1—H1···O11ii0.891 (15)2.089 (15)2.9651 (11)167.4 (14)
C2—H2B···Cg1iii0.966 (13)3.1783.874130.40
C8—H8···Cg1iv0.966 (16)2.5713.444150.57

Symmetry codes: (i) −x+2, y, −z−1/2; (ii) −x+3/2, y+1/2, z; (iii) −x+2, −y+2, −z; (iv) −x+1/2, y−3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2820).

References

  • Afsah, E. M., Hammouda, M., Khalifa, M. M. & Al-shahaby, E. H. (2008). Z. Naturforsch. Teil B, 63, 577–584.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bohme, H. & Mannich, C. (1955). Chem. Ber.88, I–XXVI.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Friedrich, C., Dallman, A., Mannich, C. & Pharmazie, D. (1991). Pharm. Ztg, 136, 691–701.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding New York: Oxford University Press Inc.
  • Nonius, B. V. (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pandeya, S. N., Sriram, D., De Clercq, E. & Nath, G. (2000). Arzneim Forsch.35, 249–255. [PubMed]
  • Ravichandran, V., Mohan, S. & Suresh Kumar, K. (2007). Arkivoc Newslett.14, 51–57.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Terzioglu, N., Karali, N., Gursoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., De Neyts, J. & Clercq, E. (2006). Arkivoc, pp. 109–118.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography