PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1406–o1407.
Published online 2009 May 29. doi:  10.1107/S1600536809019114
PMCID: PMC2969718

(E)-1-Methyl-4-[2-(2-naphth­yl)vin­yl]pyridinium iodide1

Abstract

In the title compound, C18H16N+·I, the cation is disordered over two orientations related by a 180° rotation about its long axis with occupancies of 0.554 (7) and 0.446 (7). Both disorder components exist in an E configuration. The dihedral angle between the pyridinium ring and the naphthalene ring system is 4.7 (6)° in the major disorder component and 1.6 (8)° in the minor component. In the crystal structure, centrosymmetrically related cations are stacked along the a axis, with significant π–π inter­actions between the pyridinium ring and the naphthalene ring system [centroid-centroid distance = 3.442 (9) Å]. The iodide ions are located between adjacent columns of cations. The cations are linked to the iodide ions by C—H(...)I inter­actions. Weak C—H(...)π inter­actions involving the methyl group are also observed.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For background to non-linear optical materials research, see: Cheng et al. (1991a [triangle],b [triangle]); Ogawa et al. (2008 [triangle]); Yang et al. (2007 [triangle]). For related structures, see: Chanawanno et al. (2008 [triangle]); Chantrapromma et al. (2006 [triangle]; 2007 [triangle]; 2008 [triangle]; 2009a [triangle],b [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1406-scheme1.jpg

Experimental

Crystal data

  • C18H16N+·I
  • M r = 373.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1406-efi1.jpg
  • a = 7.2789 (1) Å
  • b = 10.9363 (2) Å
  • c = 20.0883 (4) Å
  • β = 101.280 (1)°
  • V = 1568.22 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.03 mm−1
  • T = 100 K
  • 0.53 × 0.30 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.412, T max = 0.838
  • 34203 measured reflections
  • 6896 independent reflections
  • 5373 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.148
  • S = 1.06
  • 6896 reflections
  • 338 parameters
  • 91 restraints
  • H-atom parameters constrained
  • Δρmax = 3.51 e Å−3
  • Δρmin = −2.42 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019114/ci2807sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019114/ci2807Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for financial support. SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit.

supplementary crystallographic information

Comment

In order to obtain second-order non-linear optical (NLO) single crystals, the main requirements should be the choice of molecules with large hyperpolarizability (β) and these molecules should align into a noncentrosymmetric space group in the crystal. Organic crystals with extensive conjugated π systems with large hyperpolarizability which exhibit NLO properties have been reported (Ogawa et al., 2008; Yang et al., 2007). Styryl pyridinium derivatives are considered to be good conjugated π-systems (Cheng et al., 1991a, 1991b). In our on-going research in searching for NLO materials (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009a, b), we have previously reported the crystal structure of (E)-1-methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-bromobenzenesulfonate (Chantrapromma et al., 2009a). In order to study the effect of different positions of the subsituent group and anions, the title compound was synthesized by replacing the 1-naphthyl and 4-bromobenzenesulfonate in the (E)-1-methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-bromobenzenesulfonate with 2-naphthyl and iodide in the title compound. However it crystallized in the monoclinic centrosymmetric space group P21/c and would not exhibit second-order nonlinear optical properties.

Fig. 1 shows the asymmetric unit of the title compound which consists of a C18H16N+ cation and a I- anion. The whole cation is disordered over two sites; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.554 (7)/0.446 (7). The cation exists in the E configuration with respect to the C6═C7 double bond. The napthalenyl moiety is essentially planar in both disorder components as indicated by the interplanar angle between the two aromatic C8-C10/C15-C17 and C10–C15 rings [1.5 (8)° for the major component A and 3.2 (9)° for the minor component B]. The major component A of cation is slightly twisted with the dihedral angle between the pyridinium and the mean plane through the napthalenyl moiety (C8–C17) being 4.7 (6)° whereas the minor component B is almost planar [dihedral angle 1.6 (8)°]. The C4–C5–C6–C7 and C6–C7–C8–C17 torsion angles [0.4 (10)° and 2.1 (10)° in the major component and -179.4 (8)° and 179.9 (8)° in the minor component] in both disorder components indicate that the orientations of the ethynyl moiety in these components are related by 180° rotation about the long axis of the molecule. The bond lengths are in normal ranges (Allen et al., 1987) and are comparable to those observed in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009a,b).

In the crystal packing (Fig. 2), centrosymmetrically related cations are stacked along the a axis, with significant π-π interactions between pyridinium ring and naphthalene ring system [centroid-centroid distance is 3.442 (9) Å]. The iodide ions are located between adjacent coloumns of cations. The cations are linked to the iodide ions by C—H···I weak interactions (Table 1). The crystal structure is further stabilized by C—H···π interactions involving the methyl group (Table 1; Cg1 and Cg2 are centroids of the C10A-C15A and C10B-C15B rings, respectively).

Experimental

The title compound was prepared by mixing 1:1:1 molar ratio solutions of 1,4-dimethylpyridinium iodide (2 g, 8.5 mmol), 2-naphthaldehyde (1.16 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid compound formed was filtered and washed with diethylether. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 557-558 K).

Refinement

The cation is disordered over two orientations with occupancies of 0.554 (7) and 0.446 (7). The same Uij parameters were used for atom pairs N1A/N1B and C15A/C16A and all disordered atoms were subjected to a rigid bond restraint. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å (aromatic and CH) and 0.96 Å (CH3). The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.69 Å from I1 and the deepest hole is located at 0.56 Å from I1.

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor disorder component.
Fig. 2.
The crystal packing of the major component of the title compound viewed down the a axis. H atoms not involved in C—H···I interactions (dashed lines) have been omitted for clarity.

Crystal data

C18H16N+·IF(000) = 736
Mr = 373.29Dx = 1.581 Mg m3
Monoclinic, P21/cMelting point = 557–558 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.2789 (1) ÅCell parameters from 6896 reflections
b = 10.9363 (2) Åθ = 2.1–35.0°
c = 20.0883 (4) ŵ = 2.03 mm1
β = 101.280 (1)°T = 100 K
V = 1568.22 (5) Å3Plate, yellow
Z = 40.53 × 0.30 × 0.09 mm

Data collection

Bruker APEXII CCD area-detector diffractometer6896 independent reflections
Radiation source: sealed tube5373 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.412, Tmax = 0.838k = −17→16
34203 measured reflectionsl = −32→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0586P)2 + 4.6136P] where P = (Fo2 + 2Fc2)/3
6896 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 3.51 e Å3
91 restraintsΔρmin = −2.42 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I10.48129 (4)0.73286 (2)0.633723 (12)0.03874 (9)
N1A0.520 (4)0.174 (3)1.153 (2)0.022 (2)0.555 (7)
C1A0.3651 (10)0.1993 (7)1.0385 (4)0.0268 (12)0.555 (7)
H1AA0.31130.16340.99730.032*0.555 (7)
C2A0.452 (2)0.1269 (8)1.0898 (7)0.0230 (16)0.555 (7)
H2AA0.46650.04401.08200.028*0.555 (7)
C3A0.516 (2)0.2966 (15)1.1600 (7)0.033 (2)0.555 (7)
H3AA0.56890.33071.20180.039*0.555 (7)
C4A0.4359 (12)0.3744 (8)1.1076 (5)0.0290 (15)0.555 (7)
H4AA0.43820.45861.11450.035*0.555 (7)
C5A0.3533 (8)0.3270 (6)1.0454 (4)0.0238 (11)0.555 (7)
C6A0.2561 (8)0.4011 (5)0.9884 (3)0.0283 (12)0.555 (7)
H6AA0.20490.36160.94800.034*0.555 (7)
C7A0.2374 (8)0.5225 (5)0.9915 (3)0.0282 (12)0.555 (7)
H7AA0.29080.55911.03250.034*0.555 (7)
C8A0.1433 (9)0.6045 (7)0.9383 (4)0.0268 (11)0.555 (7)
C9A0.1464 (11)0.7284 (8)0.9532 (4)0.0263 (12)0.555 (7)
H9AA0.21170.75730.99470.032*0.555 (7)
C10A0.047 (3)0.8108 (13)0.9036 (9)0.028 (2)0.555 (7)
C11A0.0570 (16)0.9380 (9)0.9171 (5)0.0303 (17)0.555 (7)
H11A0.12580.96610.95820.036*0.555 (7)
C12A−0.0330 (19)1.0196 (11)0.8709 (6)0.041 (2)0.555 (7)
H12A−0.03201.10260.88110.049*0.555 (7)
C13A−0.128 (4)0.976 (2)0.8070 (8)0.047 (4)0.555 (7)
H13A−0.18821.03000.77380.056*0.555 (7)
C14A−0.129 (4)0.852 (2)0.7955 (13)0.047 (3)0.555 (7)
H14A−0.19680.82840.75340.057*0.555 (7)
C15A−0.0433 (17)0.7529 (12)0.8368 (7)0.0400 (17)0.555 (7)
C16A−0.040 (2)0.6423 (19)0.8260 (7)0.0400 (17)0.555 (7)
H16A−0.10120.61310.78400.048*0.555 (7)
C17A0.0489 (12)0.5599 (8)0.8729 (4)0.0312 (14)0.555 (7)
H17A0.04840.47690.86280.037*0.555 (7)
C18A0.618 (2)0.0940 (16)1.2057 (9)0.040 (4)0.555 (7)
H18A0.64360.13671.24830.061*0.555 (7)
H18B0.73430.06851.19410.061*0.555 (7)
H18C0.54230.02361.20950.061*0.555 (7)
N1B0.544 (5)0.186 (3)1.151 (3)0.022 (2)0.45
C1B0.3643 (13)0.2454 (8)1.0446 (5)0.0262 (16)0.445 (7)
H1BA0.30720.22321.00070.031*0.445 (7)
C2B0.443 (3)0.1573 (12)1.0917 (10)0.029 (2)0.445 (7)
H2BA0.42410.07521.08050.034*0.445 (7)
C3B0.546 (3)0.3028 (12)1.1733 (8)0.021 (2)0.445 (7)
H3BA0.60260.32181.21770.025*0.445 (7)
C4B0.4663 (15)0.3915 (9)1.1306 (5)0.0257 (15)0.445 (7)
H4BA0.47400.47211.14570.031*0.445 (7)
C5B0.3727 (11)0.3669 (8)1.0646 (4)0.0246 (14)0.445 (7)
C6B0.2907 (10)0.4672 (7)1.0211 (4)0.0276 (14)0.445 (7)
H6BA0.30670.54501.04010.033*0.445 (7)
C7B0.1948 (10)0.4609 (7)0.9569 (4)0.0277 (14)0.445 (7)
H7BA0.17860.38430.93660.033*0.445 (7)
C8B0.1140 (11)0.5666 (8)0.9168 (5)0.0258 (14)0.445 (7)
C9B0.1359 (14)0.6857 (9)0.9432 (5)0.0248 (16)0.445 (7)
H9BA0.19890.69710.98770.030*0.445 (7)
C10B0.066 (3)0.7876 (14)0.9045 (12)0.024 (2)0.445 (7)
C11B0.073 (2)0.9053 (11)0.9303 (6)0.031 (2)0.445 (7)
H11B0.13590.91930.97470.037*0.445 (7)
C12B−0.009 (2)1.0020 (13)0.8918 (6)0.035 (2)0.445 (7)
H12B0.00041.08040.91010.042*0.445 (7)
C13B−0.110 (4)0.983 (2)0.8243 (10)0.033 (3)0.445 (7)
H13B−0.16541.05030.80000.040*0.445 (7)
C14B−0.128 (5)0.8686 (15)0.7928 (12)0.024 (3)0.445 (7)
H14B−0.18910.85470.74830.029*0.445 (7)
C15B−0.0405 (15)0.7753 (7)0.8384 (5)0.0125 (13)*0.445 (7)
C16B−0.056 (2)0.6447 (17)0.8116 (6)0.031 (2)0.445 (7)
H16B−0.11770.63110.76710.037*0.445 (7)
C17B0.0140 (14)0.5504 (11)0.8485 (5)0.0323 (19)0.445 (7)
H17B−0.00160.47220.83010.039*0.445 (7)
C18B0.624 (3)0.0915 (12)1.2029 (8)0.026 (3)0.445 (7)
H18G0.57900.01201.18740.039*0.445 (7)
H18D0.58730.10951.24510.039*0.445 (7)
H18E0.75860.09281.20930.039*0.445 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.05884 (17)0.02652 (11)0.03108 (12)−0.00509 (9)0.00937 (10)0.00240 (8)
N1A0.014 (7)0.019 (5)0.037 (3)−0.005 (4)0.014 (4)0.003 (3)
C1A0.029 (3)0.021 (3)0.033 (3)−0.003 (3)0.013 (2)0.000 (3)
C2A0.024 (3)0.015 (4)0.032 (3)0.000 (3)0.011 (2)−0.005 (3)
C3A0.020 (5)0.044 (4)0.034 (5)−0.010 (3)0.004 (3)−0.011 (3)
C4A0.030 (4)0.022 (3)0.037 (4)0.002 (2)0.012 (3)−0.005 (3)
C5A0.027 (3)0.017 (3)0.030 (3)0.000 (2)0.012 (2)0.002 (2)
C6A0.029 (3)0.025 (2)0.033 (3)0.0001 (19)0.009 (2)0.001 (2)
C7A0.026 (2)0.026 (2)0.033 (3)−0.0007 (19)0.007 (2)0.000 (2)
C8A0.028 (3)0.025 (3)0.030 (3)−0.003 (2)0.012 (2)0.000 (2)
C9A0.026 (3)0.025 (3)0.030 (3)−0.001 (3)0.011 (2)0.000 (3)
C10A0.020 (5)0.039 (5)0.026 (3)0.013 (4)0.010 (3)0.008 (4)
C11A0.029 (3)0.027 (4)0.037 (4)0.002 (3)0.011 (3)0.008 (3)
C12A0.032 (5)0.035 (4)0.058 (7)0.005 (3)0.017 (5)0.018 (4)
C13A0.027 (5)0.066 (7)0.049 (8)0.011 (6)0.012 (6)0.025 (6)
C14A0.027 (7)0.073 (8)0.045 (7)−0.001 (8)0.013 (5)0.008 (6)
C15A0.027 (3)0.055 (4)0.042 (3)−0.009 (3)0.015 (2)−0.007 (3)
C16A0.027 (3)0.055 (4)0.042 (3)−0.009 (3)0.015 (2)−0.007 (3)
C17A0.032 (4)0.030 (3)0.033 (4)−0.008 (2)0.011 (3)−0.008 (3)
C18A0.019 (5)0.049 (7)0.050 (7)0.000 (4)−0.001 (5)−0.001 (5)
N1B0.014 (7)0.019 (5)0.037 (3)−0.005 (4)0.014 (4)0.003 (3)
C1B0.030 (3)0.017 (4)0.033 (4)−0.003 (3)0.011 (3)−0.001 (3)
C2B0.030 (4)0.018 (5)0.042 (4)0.003 (5)0.019 (3)−0.007 (4)
C3B0.016 (5)0.012 (3)0.035 (6)−0.005 (3)0.004 (4)−0.007 (3)
C4B0.031 (4)0.019 (3)0.031 (4)−0.006 (3)0.017 (3)−0.003 (3)
C5B0.030 (3)0.021 (3)0.026 (3)−0.003 (3)0.012 (3)−0.007 (2)
C6B0.029 (3)0.022 (3)0.032 (3)0.001 (2)0.009 (2)0.001 (2)
C7B0.028 (3)0.025 (3)0.032 (3)0.001 (2)0.009 (2)−0.004 (2)
C8B0.024 (3)0.022 (3)0.031 (4)0.000 (3)0.007 (3)0.000 (3)
C9B0.029 (3)0.024 (4)0.022 (3)0.000 (3)0.008 (2)−0.003 (3)
C10B0.009 (4)0.031 (5)0.032 (4)0.007 (4)0.007 (3)−0.004 (4)
C11B0.031 (4)0.032 (5)0.030 (5)0.000 (4)0.008 (4)0.002 (4)
C12B0.036 (5)0.032 (5)0.039 (6)0.003 (4)0.014 (5)0.000 (4)
C13B0.026 (7)0.037 (5)0.041 (7)0.006 (4)0.015 (6)0.005 (5)
C14B0.018 (6)0.028 (4)0.026 (4)0.007 (3)0.003 (4)0.015 (3)
C16B0.030 (5)0.029 (4)0.035 (5)0.002 (3)0.009 (4)−0.003 (4)
C17B0.026 (4)0.045 (5)0.026 (4)−0.003 (3)0.006 (3)−0.011 (4)
C18B0.039 (8)0.014 (4)0.032 (5)0.012 (4)0.022 (5)0.012 (4)

Geometric parameters (Å, °)

N1A—C3A1.34 (3)N1B—C2B1.31 (6)
N1A—C2A1.38 (4)N1B—C3B1.36 (4)
N1A—C18A1.45 (4)N1B—C18B1.50 (5)
C1A—C2A1.354 (13)C1B—C5B1.385 (12)
C1A—C5A1.408 (10)C1B—C2B1.393 (18)
C1A—H1AA0.93C1B—H1BA0.93
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.390 (17)C3B—C4B1.350 (17)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.378 (10)C4B—C5B1.393 (12)
C4A—H4AA0.93C4B—H4BA0.93
C5A—C6A1.467 (8)C5B—C6B1.456 (11)
C6A—C7A1.337 (8)C6B—C7B1.342 (10)
C6A—H6AA0.93C6B—H6BA0.93
C7A—C8A1.460 (9)C7B—C8B1.465 (11)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.386 (10)C8B—C9B1.404 (12)
C8A—C17A1.442 (10)C8B—C17B1.432 (12)
C9A—C10A1.429 (15)C9B—C10B1.397 (19)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.417 (16)C10B—C11B1.385 (19)
C10A—C15A1.51 (2)C10B—C15B1.41 (2)
C11A—C12A1.360 (11)C11B—C12B1.378 (15)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.416 (17)C12B—C13B1.424 (17)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.38 (3)C13B—C14B1.40 (2)
C13A—H13A0.93C13B—H13B0.93
C14A—C15A1.43 (2)C14B—C15B1.435 (15)
C14A—H14A0.93C14B—H14B0.93
C15A—C16A1.23 (2)C15B—C16B1.52 (2)
C16A—C17A1.372 (18)C16B—C17B1.313 (19)
C16A—H16A0.93C16B—H16B0.93
C17A—H17A0.93C17B—H17B0.93
C18A—H18A0.96C18B—H18G0.96
C18A—H18B0.96C18B—H18D0.96
C18A—H18C0.96C18B—H18E0.96
C3A—N1A—C2A117 (3)C5B—C1B—C2B118.5 (10)
C3A—N1A—C18A123 (3)C5B—C1B—H1BA120.7
C2A—N1A—C18A119 (2)C2B—C1B—H1BA120.7
C2A—C1A—C5A122.2 (7)N1B—C2B—C1B123 (2)
C2A—C1A—H1AA118.9N1B—C2B—H2BA118.7
C5A—C1A—H1AA118.9C1B—C2B—H2BA118.7
C1A—C2A—N1A120.9 (15)C4B—C3B—N1B120 (2)
C1A—C2A—H2AA119.5C4B—C3B—H3BA120.2
N1A—C2A—H2AA119.5N1B—C3B—H3BA120.2
N1A—C3A—C4A123 (2)C3B—C4B—C5B122.4 (9)
N1A—C3A—H3AA118.4C3B—C4B—H4BA118.8
C4A—C3A—H3AA118.4C5B—C4B—H4BA118.8
C5A—C4A—C3A120.0 (9)C1B—C5B—C4B116.6 (8)
C5A—C4A—H4AA120.0C1B—C5B—C6B124.0 (8)
C3A—C4A—H4AA120.0C4B—C5B—C6B119.5 (8)
C4A—C5A—C1A116.0 (6)C7B—C6B—C5B127.8 (7)
C4A—C5A—C6A123.9 (7)C7B—C6B—H6BA116.1
C1A—C5A—C6A120.0 (7)C5B—C6B—H6BA116.1
C7A—C6A—C5A123.4 (6)C6B—C7B—C8B124.5 (7)
C7A—C6A—H6AA118.3C6B—C7B—H7BA117.8
C5A—C6A—H6AA118.3C8B—C7B—H7BA117.8
C6A—C7A—C8A127.9 (6)C9B—C8B—C17B118.4 (8)
C6A—C7A—H7AA116.1C9B—C8B—C7B121.3 (8)
C8A—C7A—H7AA116.1C17B—C8B—C7B120.3 (9)
C9A—C8A—C17A120.8 (6)C10B—C9B—C8B121.8 (11)
C9A—C8A—C7A117.2 (7)C10B—C9B—H9BA119.1
C17A—C8A—C7A122.0 (7)C8B—C9B—H9BA119.1
C8A—C9A—C10A118.7 (10)C11B—C10B—C9B123.3 (17)
C8A—C9A—H9AA120.6C11B—C10B—C15B114.6 (13)
C10A—C9A—H9AA120.6C9B—C10B—C15B121.6 (13)
C11A—C10A—C9A119.1 (14)C12B—C11B—C10B121.5 (13)
C11A—C10A—C15A125.2 (12)C12B—C11B—H11B119.3
C9A—C10A—C15A115.3 (11)C10B—C11B—H11B119.3
C12A—C11A—C10A121.0 (12)C11B—C12B—C13B120.7 (13)
C12A—C11A—H11A119.5C11B—C12B—H12B119.7
C10A—C11A—H11A119.5C13B—C12B—H12B119.7
C11A—C12A—C13A119.0 (13)C14B—C13B—C12B123.1 (17)
C11A—C12A—H12A120.5C14B—C13B—H13B118.4
C13A—C12A—H12A120.5C12B—C13B—H13B118.4
C14A—C13A—C12A117.7 (18)C13B—C14B—C15B110.9 (17)
C14A—C13A—H13A121.1C13B—C14B—H14B124.6
C12A—C13A—H13A121.1C15B—C14B—H14B124.6
C13A—C14A—C15A132 (2)C10B—C15B—C14B129.0 (13)
C13A—C14A—H14A114.2C10B—C15B—C16B114.3 (9)
C15A—C14A—H14A114.2C14B—C15B—C16B116.6 (12)
C16A—C15A—C14A131.7 (17)C17B—C16B—C15B122.9 (12)
C16A—C15A—C10A123.1 (14)C17B—C16B—H16B118.5
C14A—C15A—C10A105.1 (14)C15B—C16B—H16B118.5
C15A—C16A—C17A123.3 (14)C16B—C17B—C8B120.8 (11)
C15A—C16A—H16A118.4C16B—C17B—H17B119.6
C17A—C16A—H16A118.4C8B—C17B—H17B119.6
C16A—C17A—C8A118.6 (10)N1B—C18B—H18G109.5
C16A—C17A—H17A120.7N1B—C18B—H18D109.5
C8A—C17A—H17A120.7H18G—C18B—H18D109.5
C2B—N1B—C3B120 (3)N1B—C18B—H18E109.5
C2B—N1B—C18B123 (3)H18G—C18B—H18E109.5
C3B—N1B—C18B116 (4)H18D—C18B—H18E109.5
C5A—C1A—C2A—N1A6(2)C3B—N1B—C2B—C1B12 (4)
C3A—N1A—C2A—C1A−8(3)C18B—N1B—C2B—C1B178 (2)
C18A—N1A—C2A—C1A−177.7 (16)C5B—C1B—C2B—N1B−8(3)
C2A—N1A—C3A—C4A4(3)C2B—N1B—C3B—C4B−9(4)
C18A—N1A—C3A—C4A174.0 (18)C18B—N1B—C3B—C4B−176.2 (19)
N1A—C3A—C4A—C5A1(3)N1B—C3B—C4B—C5B3(3)
C3A—C4A—C5A—C1A−3.3 (14)C2B—C1B—C5B—C4B2.0 (16)
C3A—C4A—C5A—C6A176.4 (11)C2B—C1B—C5B—C6B−178.1 (12)
C2A—C1A—C5A—C4A0.1 (13)C3B—C4B—C5B—C1B0.3 (17)
C2A—C1A—C5A—C6A−179.6 (10)C3B—C4B—C5B—C6B−179.6 (13)
C4A—C5A—C6A—C7A−0.4 (10)C1B—C5B—C6B—C7B0.7 (13)
C1A—C5A—C6A—C7A179.2 (6)C4B—C5B—C6B—C7B−179.4 (8)
C5A—C6A—C7A—C8A−179.7 (6)C5B—C6B—C7B—C8B179.0 (7)
C6A—C7A—C8A—C9A−178.5 (6)C6B—C7B—C8B—C9B1.5 (12)
C6A—C7A—C8A—C17A2.1 (10)C6B—C7B—C8B—C17B179.9 (8)
C17A—C8A—C9A—C10A2.7 (14)C17B—C8B—C9B—C10B−1.0 (18)
C7A—C8A—C9A—C10A−176.7 (12)C7B—C8B—C9B—C10B177.5 (14)
C8A—C9A—C10A—C11A−177.1 (13)C8B—C9B—C10B—C11B175.4 (16)
C8A—C9A—C10A—C15A−4(2)C8B—C9B—C10B—C15B4(3)
C9A—C10A—C11A—C12A179.0 (13)C9B—C10B—C11B—C12B−175.2 (17)
C15A—C10A—C11A—C12A6(3)C15B—C10B—C11B—C12B−3(3)
C10A—C11A—C12A—C13A−4(2)C10B—C11B—C12B—C13B1(3)
C11A—C12A—C13A—C14A2(4)C11B—C12B—C13B—C14B−1(4)
C12A—C13A—C14A—C15A−2(5)C12B—C13B—C14B—C15B2(4)
C13A—C14A—C15A—C16A−178 (3)C11B—C10B—C15B—C14B6(3)
C13A—C14A—C15A—C10A4(4)C9B—C10B—C15B—C14B178 (2)
C11A—C10A—C15A—C16A176.1 (17)C11B—C10B—C15B—C16B−177.2 (17)
C9A—C10A—C15A—C16A3(2)C9B—C10B—C15B—C16B−5(3)
C11A—C10A—C15A—C14A−6(3)C13B—C14B—C15B—C10B−5(4)
C9A—C10A—C15A—C14A−178.7 (19)C13B—C14B—C15B—C16B178 (2)
C14A—C15A—C16A—C17A−179 (2)C10B—C15B—C16B—C17B4(2)
C10A—C15A—C16A—C17A−1(2)C14B—C15B—C16B—C17B−178 (2)
C15A—C16A—C17A—C8A0(2)C15B—C16B—C17B—C8B−1(2)
C9A—C8A—C17A—C16A−0.9 (13)C9B—C8B—C17B—C16B−0.2 (16)
C7A—C8A—C17A—C16A178.5 (10)C7B—C8B—C17B—C16B−178.7 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18A—H18A···I1i0.963.053.928 (17)152
C18A—H18B···Cg1i0.962.633.513 (18)153
C18A—H18B···Cg2i0.962.653.517 (18)150
C18B—H18E···Cg1i0.962.623.44 (2)143
C18B—H18E···Cg2i0.962.663.45 (2)139

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2807).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883. [PMC free article] [PubMed]
  • Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1144–o1145. [PMC free article] [PubMed]
  • Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575. [PMC free article] [PubMed]
  • Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009b). Acta Cryst. E65, o217–o218. [PMC free article] [PubMed]
  • Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.
  • Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.
  • Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991a). J. Phys. Chem.95, 10643–10652.
  • Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991b). J. Phys. Chem.95, 10631–10643.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 83–86.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography