PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1322–o1323.
Published online 2009 May 20. doi:  10.1107/S1600536809018029
PMCID: PMC2969715

7,7′,8,8′-Tetra­meth­oxy-4,4′-dimethyl-3,5′-bichromene-2,2′-dione

Abstract

In the title mol­ecule, C24H22O8, the mean planes of the two coumarin units are inclined to each other at a dihedral angle of 79.93 (3)°. The attached meth­oxy groups form torsion angles of 7.65 (19) and 78.36 (14)° with respect to one coumarin unit, and angles of 9.01 (16) and 99.08 (11)° with respect to the other coumarin unit. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect pairs of mol­ecules to form dimers, generating R 2 2(16) and R 2 2(18) rings; the dimers are linked by further weak inter­molecular C—H(...)O hydrogen bonds, forming extended chains. Additional stabil­ization is provided by weak C—H(...)π inter­actions.

Related literature

For the biological activity of coumarins, see: El-Agrody et al. (2001 [triangle]); El-Farargy (1991 [triangle]); Emmanuel-Giota et al. (2001 [triangle]); Ghate et al. (2005 [triangle]); Laakso et al. (1994 [triangle]); Nofal et al. (2000 [triangle]); Pratibha et al. (1999 [triangle]); Shaker (1996 [triangle]); Yang et al. (2005 [triangle]). For the pharmaceutical properties of coumarin derivatives, see: Kennedy et al. (1997 [triangle]). For related literature on natural and synthetic coumarins, see: Carlton et al. (1996 [triangle]); Zhou et al. (2000 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1322-scheme1.jpg

Experimental

Crystal data

  • C24H22O8
  • M r = 438.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1322-efi1.jpg
  • a = 9.4724 (1) Å
  • b = 23.4766 (3) Å
  • c = 9.3525 (1) Å
  • β = 96.254 (1)°
  • V = 2067.43 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.50 × 0.27 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.949, T max = 0.985
  • 58385 measured reflections
  • 7006 independent reflections
  • 6023 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.125
  • S = 1.07
  • 7006 reflections
  • 295 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018029/lh2822sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018029/lh2822Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Coumarins are a large group of naturally occurring oxygen heterocycles representing 2H-1-benzopyran-2-one derivatives. Many natural coumarins are reputed for their wide range of biological activites such as antibacterial (El-Agrody et al., 2001; Pratibha et al., 1999), antifungal (Shaker, 1996; El-Farargy, 1991), antioxidant (Yang et al., 2005), analgesic (Ghate et al., 2005), anti-inflammatory (Emmanuel-Giota et al., 2001) and antitumor (Nofal et al., 2000). Bi and tri-coumarins are a comparatively new group of compounds which are widespread in nature and their biological properties are also well known (Laakso et al., 1994). One of the characteristic pharmacological properties of coumarin derivatives is anticoagulant action (Kennedy et al., 1997). A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. Keeping in view of these biological importance of coumarins and their dimers, we have synthesized the title compound (I) and report herein its crystal structure.

The molecular structure of the title compound is shown in Fig .1. In crystal structure of (I) molecules are linked by weak intermolecular C-H···O hydrogen bonds to form R22(16) and R22(18) rings (Bernstein et al., (1995). The two coumarin units are essentially planar with the maximum deviation from planarity of 0.0665 (11)Å for atom C9 in the ring (O3/C1–C9) and 0.0419 (12)Å for atom C16 in the ring (O7/C10–C18). The two coumarin units forming a dihedral angle of 79.93 (3)° (O3/C1–C9:O7/C10–C18), indicating that they are inclined to each other. Two of the methoxy units attached to the each coumarin units are twisted from the plane of coumarin unit as indicated by the torsion angles of C19–O1—C4–C5=-7.65 (19)°; C20–O2–C3–C2=78.36 (14)°; C22–O5–C12–C11=9.01 (16)° and C23–O6–C13–C14=99.08 (11)°, respectively. The bond lengths Allen et al. (1987) and bond angles are normal.

The crystal packing is illustrated in Fig. 2. In addition C—H···π interactions help stabilize the crystal structure.

Experimental

A mixture of 7,8-dimethoxy-4-methyl coumarin (2.20 g, 10 mmol) and manganese(III) acetate (0.774 g, 1 mmol) was stirred at room temperature, then 70% perchloric acid (0.8 g, 6 mmol) was added. The reaction mixture was heated under reflux at 114°C with stirring in the atmosphere of nitrogen for 3 h. The reaction mixture was cooled and diluted with 50 ml of benzene. The benzene solution was washed with water and aq. NaHCO3, dried over anhydrous Na2SO4 and left to evaporate. The residue showed two major compounds which were separated by column chromatography followed by preparative thin layer chromatography (Benzene: EtOAc, 9:1) into the title compound (I) (260 mg, 12%).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
Part of the crystal structure of (I). Dashed lines indicate the hydrogen bonds.

Crystal data

C24H22O8F(000) = 920
Mr = 438.42Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9875 reflections
a = 9.4724 (1) Åθ = 2.7–33.0°
b = 23.4766 (3) ŵ = 0.11 mm1
c = 9.3525 (1) ÅT = 100 K
β = 96.254 (1)°Plate, colourless
V = 2067.43 (4) Å30.50 × 0.27 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7006 independent reflections
Radiation source: fine-focus sealed tube6023 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 31.7°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.949, Tmax = 0.985k = −34→34
58385 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0593P)2 + 0.8142P] where P = (Fo2 + 2Fc2)/3
7006 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.69654 (9)0.68242 (4)0.29953 (11)0.0282 (2)
O20.43643 (8)0.65723 (3)0.37372 (10)0.02296 (17)
O30.26852 (8)0.73969 (3)0.46388 (9)0.01987 (16)
O40.05685 (9)0.76180 (3)0.52477 (10)0.02502 (18)
O50.03012 (9)0.95276 (4)0.88144 (9)0.02254 (17)
O6−0.18774 (8)0.99197 (3)0.69969 (9)0.02027 (16)
O7−0.22134 (8)0.96109 (3)0.42722 (8)0.01782 (15)
O8−0.35251 (9)0.97343 (4)0.21952 (10)0.02664 (18)
C10.17182 (11)0.77961 (4)0.50060 (12)0.01762 (19)
C20.40061 (11)0.75552 (4)0.43041 (12)0.01703 (19)
C30.48594 (11)0.71220 (4)0.38541 (13)0.0191 (2)
C40.62110 (12)0.72617 (5)0.34739 (13)0.0217 (2)
C50.66991 (12)0.78230 (5)0.36156 (16)0.0274 (3)
H5A0.76070.79140.33980.033*
C60.58343 (12)0.82435 (5)0.40787 (15)0.0247 (2)
H6A0.61740.86150.41720.030*
C70.44578 (11)0.81239 (4)0.44116 (12)0.01799 (19)
C80.34781 (11)0.85546 (4)0.48140 (12)0.01690 (18)
C90.21437 (11)0.83939 (4)0.50522 (11)0.01574 (18)
C100.10535 (11)0.88049 (4)0.54652 (11)0.01548 (18)
C110.12224 (11)0.89822 (4)0.68924 (11)0.01727 (19)
H11A0.19960.88520.75020.021*
C120.02494 (11)0.93527 (4)0.74272 (11)0.01696 (18)
C13−0.09034 (11)0.95541 (4)0.65136 (11)0.01643 (18)
C14−0.10474 (10)0.93843 (4)0.50800 (11)0.01503 (18)
C15−0.24804 (11)0.95111 (5)0.28163 (12)0.0192 (2)
C16−0.15038 (12)0.91360 (5)0.21998 (12)0.01956 (19)
H16A−0.16460.90670.12150.023*
C17−0.03892 (11)0.88778 (4)0.29753 (11)0.01678 (18)
C18−0.00961 (10)0.90076 (4)0.45039 (11)0.01475 (17)
C190.82791 (13)0.69680 (6)0.24429 (17)0.0318 (3)
H19A0.86430.66390.19970.048*
H19B0.89560.70940.32180.048*
H19C0.81150.72670.17450.048*
C200.49521 (14)0.62163 (6)0.48972 (18)0.0333 (3)
H20A0.47250.58260.46740.050*
H20B0.45600.63220.57630.050*
H20C0.59650.62620.50310.050*
C210.39362 (12)0.91653 (5)0.49091 (15)0.0257 (2)
H21A0.31140.94060.48780.039*
H21B0.44590.92540.41150.039*
H21C0.45280.92270.57960.039*
C220.15479 (13)0.93845 (5)0.97486 (12)0.0238 (2)
H22A0.14520.95201.07010.036*
H22B0.23620.95590.94010.036*
H22C0.16670.89780.97700.036*
C23−0.29354 (12)0.96294 (5)0.77235 (14)0.0259 (2)
H23A−0.36980.98870.78530.039*
H23B−0.25150.94980.86450.039*
H23C−0.32970.93100.71560.039*
C240.04626 (13)0.84603 (5)0.22071 (12)0.0231 (2)
H24A0.01040.84480.12070.035*
H24B0.03890.80890.26220.035*
H24C0.14400.85770.23010.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0195 (4)0.0190 (4)0.0486 (6)0.0025 (3)0.0146 (4)−0.0069 (4)
O20.0185 (4)0.0128 (3)0.0376 (5)−0.0003 (3)0.0030 (3)−0.0021 (3)
O30.0148 (3)0.0137 (3)0.0323 (4)0.0002 (3)0.0084 (3)0.0006 (3)
O40.0187 (4)0.0191 (4)0.0394 (5)−0.0007 (3)0.0131 (3)0.0040 (3)
O50.0217 (4)0.0293 (4)0.0165 (4)0.0057 (3)0.0015 (3)−0.0044 (3)
O60.0202 (4)0.0194 (3)0.0224 (4)0.0060 (3)0.0074 (3)−0.0010 (3)
O70.0160 (3)0.0176 (3)0.0196 (4)0.0032 (3)0.0009 (3)0.0009 (3)
O80.0217 (4)0.0313 (4)0.0257 (4)0.0055 (3)−0.0034 (3)0.0020 (3)
C10.0160 (4)0.0151 (4)0.0225 (5)0.0022 (3)0.0059 (4)0.0022 (3)
C20.0130 (4)0.0153 (4)0.0234 (5)0.0004 (3)0.0045 (4)0.0005 (3)
C30.0156 (4)0.0136 (4)0.0283 (5)0.0003 (3)0.0039 (4)−0.0018 (4)
C40.0172 (5)0.0167 (4)0.0326 (6)0.0026 (3)0.0078 (4)−0.0031 (4)
C50.0171 (5)0.0187 (5)0.0485 (7)−0.0010 (4)0.0136 (5)−0.0040 (5)
C60.0175 (5)0.0156 (4)0.0428 (7)−0.0013 (4)0.0106 (5)−0.0032 (4)
C70.0147 (4)0.0138 (4)0.0263 (5)0.0005 (3)0.0057 (4)−0.0005 (3)
C80.0151 (4)0.0137 (4)0.0220 (5)0.0010 (3)0.0030 (4)−0.0002 (3)
C90.0154 (4)0.0139 (4)0.0184 (4)0.0017 (3)0.0041 (3)0.0004 (3)
C100.0148 (4)0.0137 (4)0.0185 (4)0.0010 (3)0.0044 (3)0.0007 (3)
C110.0156 (4)0.0187 (4)0.0176 (4)0.0030 (3)0.0022 (3)0.0003 (3)
C120.0172 (4)0.0179 (4)0.0161 (4)0.0009 (3)0.0031 (3)−0.0010 (3)
C130.0165 (4)0.0153 (4)0.0181 (4)0.0029 (3)0.0047 (3)−0.0006 (3)
C140.0132 (4)0.0143 (4)0.0176 (4)0.0009 (3)0.0019 (3)0.0012 (3)
C150.0184 (5)0.0194 (4)0.0194 (5)−0.0014 (3)0.0007 (4)0.0014 (4)
C160.0205 (5)0.0215 (5)0.0167 (4)−0.0011 (4)0.0020 (4)−0.0004 (4)
C170.0181 (4)0.0156 (4)0.0173 (4)−0.0018 (3)0.0049 (3)−0.0005 (3)
C180.0152 (4)0.0132 (4)0.0165 (4)0.0004 (3)0.0043 (3)0.0004 (3)
C190.0205 (5)0.0279 (6)0.0496 (8)0.0011 (4)0.0157 (5)−0.0096 (5)
C200.0235 (6)0.0236 (5)0.0527 (8)0.0009 (4)0.0034 (5)0.0119 (5)
C210.0184 (5)0.0143 (4)0.0451 (7)−0.0001 (4)0.0063 (5)−0.0029 (4)
C220.0240 (5)0.0293 (5)0.0176 (5)0.0024 (4)−0.0006 (4)−0.0004 (4)
C230.0184 (5)0.0284 (5)0.0322 (6)0.0002 (4)0.0078 (4)−0.0034 (5)
C240.0285 (6)0.0238 (5)0.0178 (5)0.0052 (4)0.0057 (4)−0.0028 (4)

Geometric parameters (Å, °)

O1—C41.3548 (13)C11—C121.3988 (14)
O1—C191.4386 (15)C11—H11A0.9300
O2—C31.3733 (12)C12—C131.3939 (14)
O2—C201.4332 (16)C13—C141.3911 (14)
O3—C21.3736 (12)C14—C181.4107 (13)
O3—C11.3798 (12)C15—C161.4421 (15)
O4—C11.2106 (13)C16—C171.3569 (15)
O5—C121.3565 (13)C16—H16A0.9300
O5—C221.4305 (14)C17—C181.4586 (14)
O6—C131.3723 (12)C17—C241.5015 (15)
O6—C231.4419 (14)C19—H19A0.9600
O7—C141.3755 (12)C19—H19B0.9600
O7—C151.3777 (13)C19—H19C0.9600
O8—C151.2108 (13)C20—H20A0.9600
C1—C91.4594 (14)C20—H20B0.9600
C2—C31.3924 (14)C20—H20C0.9600
C2—C71.4023 (14)C21—H21A0.9600
C3—C41.4043 (15)C21—H21B0.9600
C4—C51.3980 (15)C21—H21C0.9600
C5—C61.3822 (15)C22—H22A0.9600
C5—H5A0.9300C22—H22B0.9600
C6—C71.4016 (15)C22—H22C0.9600
C6—H6A0.9300C23—H23A0.9600
C7—C81.4496 (14)C23—H23B0.9600
C8—C91.3605 (14)C23—H23C0.9600
C8—C211.4977 (14)C24—H24A0.9600
C9—C101.4945 (14)C24—H24B0.9600
C10—C111.3906 (14)C24—H24C0.9600
C10—C181.4168 (14)
C4—O1—C19116.67 (9)O8—C15—O7116.93 (10)
C3—O2—C20112.74 (10)O8—C15—C16126.78 (10)
C2—O3—C1121.26 (8)O7—C15—C16116.26 (9)
C12—O5—C22117.03 (9)C17—C16—C15123.69 (10)
C13—O6—C23112.73 (8)C17—C16—H16A118.2
C14—O7—C15121.80 (8)C15—C16—H16A118.2
O4—C1—O3116.55 (9)C16—C17—C18118.98 (9)
O4—C1—C9125.29 (9)C16—C17—C24117.60 (10)
O3—C1—C9118.15 (9)C18—C17—C24123.41 (9)
O3—C2—C3116.39 (9)C14—C18—C10116.55 (9)
O3—C2—C7121.30 (9)C14—C18—C17116.36 (9)
C3—C2—C7122.30 (9)C10—C18—C17127.08 (9)
O2—C3—C2120.39 (9)O1—C19—H19A109.5
O2—C3—C4120.81 (9)O1—C19—H19B109.5
C2—C3—C4118.76 (9)H19A—C19—H19B109.5
O1—C4—C5124.40 (10)O1—C19—H19C109.5
O1—C4—C3115.77 (10)H19A—C19—H19C109.5
C5—C4—C3119.82 (10)H19B—C19—H19C109.5
C6—C5—C4120.12 (10)O2—C20—H20A109.5
C6—C5—H5A119.9O2—C20—H20B109.5
C4—C5—H5A119.9H20A—C20—H20B109.5
C5—C6—C7121.60 (10)O2—C20—H20C109.5
C5—C6—H6A119.2H20A—C20—H20C109.5
C7—C6—H6A119.2H20B—C20—H20C109.5
C6—C7—C2117.31 (9)C8—C21—H21A109.5
C6—C7—C8123.73 (9)C8—C21—H21B109.5
C2—C7—C8118.93 (9)H21A—C21—H21B109.5
C9—C8—C7118.78 (9)C8—C21—H21C109.5
C9—C8—C21121.61 (9)H21A—C21—H21C109.5
C7—C8—C21119.58 (9)H21B—C21—H21C109.5
C8—C9—C1121.36 (9)O5—C22—H22A109.5
C8—C9—C10122.93 (9)O5—C22—H22B109.5
C1—C9—C10115.60 (9)H22A—C22—H22B109.5
C11—C10—C18120.57 (9)O5—C22—H22C109.5
C11—C10—C9115.52 (9)H22A—C22—H22C109.5
C18—C10—C9123.91 (9)H22B—C22—H22C109.5
C10—C11—C12121.19 (9)O6—C23—H23A109.5
C10—C11—H11A119.4O6—C23—H23B109.5
C12—C11—H11A119.4H23A—C23—H23B109.5
O5—C12—C13115.33 (9)O6—C23—H23C109.5
O5—C12—C11125.00 (9)H23A—C23—H23C109.5
C13—C12—C11119.63 (9)H23B—C23—H23C109.5
O6—C13—C14119.86 (9)C17—C24—H24A109.5
O6—C13—C12121.34 (9)C17—C24—H24B109.5
C14—C13—C12118.79 (9)H24A—C24—H24B109.5
O7—C14—C13114.02 (8)C17—C24—H24C109.5
O7—C14—C18122.74 (9)H24A—C24—H24C109.5
C13—C14—C18123.23 (9)H24B—C24—H24C109.5
C2—O3—C1—O4178.16 (10)C8—C9—C10—C18103.55 (13)
C2—O3—C1—C9−0.94 (15)C1—C9—C10—C18−80.20 (12)
C1—O3—C2—C3−175.74 (10)C18—C10—C11—C121.57 (15)
C1—O3—C2—C74.15 (16)C9—C10—C11—C12−178.01 (9)
C20—O2—C3—C2−103.96 (12)C22—O5—C12—C13−173.06 (9)
C20—O2—C3—C478.36 (14)C22—O5—C12—C119.01 (16)
O3—C2—C3—O21.16 (16)C10—C11—C12—O5177.12 (10)
C7—C2—C3—O2−178.72 (10)C10—C11—C12—C13−0.73 (16)
O3—C2—C3—C4178.89 (10)C23—O6—C13—C1499.08 (11)
C7—C2—C3—C4−1.00 (17)C23—O6—C13—C12−81.83 (12)
C19—O1—C4—C5−7.65 (19)O5—C12—C13—O62.19 (15)
C19—O1—C4—C3172.97 (11)C11—C12—C13—O6−179.76 (9)
O2—C3—C4—O10.06 (17)O5—C12—C13—C14−178.71 (9)
C2—C3—C4—O1−177.65 (10)C11—C12—C13—C14−0.66 (15)
O2—C3—C4—C5−179.34 (11)C15—O7—C14—C13176.70 (9)
C2—C3—C4—C52.94 (18)C15—O7—C14—C18−4.07 (14)
O1—C4—C5—C6178.29 (13)O6—C13—C14—O7−0.41 (14)
C3—C4—C5—C6−2.4 (2)C12—C13—C14—O7−179.52 (9)
C4—C5—C6—C7−0.2 (2)O6—C13—C14—C18−179.63 (9)
C5—C6—C7—C22.14 (19)C12—C13—C14—C181.25 (15)
C5—C6—C7—C8−175.98 (12)C14—O7—C15—O8−179.20 (9)
O3—C2—C7—C6178.61 (11)C14—O7—C15—C162.60 (14)
C3—C2—C7—C6−1.51 (17)O8—C15—C16—C17−176.66 (11)
O3—C2—C7—C8−3.18 (16)O7—C15—C16—C171.34 (16)
C3—C2—C7—C8176.71 (10)C15—C16—C17—C18−3.75 (16)
C6—C7—C8—C9177.07 (11)C15—C16—C17—C24174.94 (10)
C2—C7—C8—C9−1.03 (16)O7—C14—C18—C10−179.60 (9)
C6—C7—C8—C21−0.87 (18)C13—C14—C18—C10−0.43 (14)
C2—C7—C8—C21−178.97 (11)O7—C14—C18—C171.53 (14)
C7—C8—C9—C14.21 (16)C13—C14—C18—C17−179.31 (9)
C21—C8—C9—C1−177.89 (11)C11—C10—C18—C14−0.98 (14)
C7—C8—C9—C10−179.74 (10)C9—C10—C18—C14178.57 (9)
C21—C8—C9—C10−1.85 (17)C11—C10—C18—C17177.76 (10)
O4—C1—C9—C8177.67 (11)C9—C10—C18—C17−2.69 (16)
O3—C1—C9—C8−3.33 (15)C16—C17—C18—C142.26 (14)
O4—C1—C9—C101.35 (16)C24—C17—C18—C14−176.35 (9)
O3—C1—C9—C10−179.65 (9)C16—C17—C18—C10−176.47 (10)
C8—C9—C10—C11−76.88 (13)C24—C17—C18—C104.91 (16)
C1—C9—C10—C1199.37 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21A···O6i0.962.553.2921 (15)134
C22—H22A···O6ii0.962.523.4385 (14)161
C22—H22B···O8i0.962.563.4401 (15)152
C6—H6A···Cg1iii0.932.923.6706 (12)138
C19—H19A···Cg2iv0.962.603.5446 (14)170

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) x+1, y, z; (iv) x+1, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2822).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol.30, 145–151. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527.
  • El-Farargy, A. F. (1991). Egypt. J. Pharm. Sci.32, 625–625.
  • Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem.38, 717–722.
  • Ghate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem.40, 882–887. [PubMed]
  • Kennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action New York: Wiley & Sons.
  • Laakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod.57, 128–133. [PubMed]
  • Nofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99–113.
  • Pratibha, S. & Shreeya, P. (1999). Indian J. Chem. Sect. B, 38, 1139–1142.
  • Shaker, R. M. (1996). Pharmazie, 51, 148–148. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med.71, 852–60. [PubMed]
  • Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography