PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1199–o1200.
Published online 2009 May 7. doi:  10.1107/S1600536809015384
PMCID: PMC2969702

Dimethyl [(4-fluoro­phen­yl)(6-methoxy­benzothia­zol-2-ylamino)meth­yl]phospho­nate

Abstract

In the mol­ecule of title compound, C17H18FN2O4PS, both the benzene ring with its conjunction C atom and the benzothia­zole ring with its conjunction N atom are close to planar (the maximum deviations are 0.0267 and 0.0427 Å for the benzene and benzothiazole rings, respectively), the dihedral angle between the planes of the benzothia­zole and benzene rings is 119.05 (3)°. The mol­ecular packing is stabilized by inter­molecular N—H(...)O, C—H(...)N and C—H(...)F hydrogen bonding, and by C—H(...)π and π–π stacking inter­actions [centroid–centroid distances = 2.99 (2), 2.96 (3), 2.88 (2) and 3.773 (4) Å].

Related literature

For the biological activity of α-amino­phospho­nate derivatives, see: Kafarski & Lejczak (2001 [triangle]); De Lombaert et al. (1995 [triangle]); Du et al., (1999 [triangle]). For activities of α-amino­phospho­nate derivatives containing an F atom and benzothia­zole or iaoxazole units, see: Yang et al. (2005 [triangle]); Song et al. (2005 [triangle]); Jin et al. (2006 [triangle]). For related structures, see: Fang et al. (2009 [triangle]); Yang et al. (2005 [triangle]); Jin et al. (2006 [triangle]); Song et al. (2005 [triangle]); Alvarez et al. (2005 [triangle]); Chen & Li (1987 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1199-scheme1.jpg

Experimental

Crystal data

  • C17H18FN2O4PS
  • M r = 396.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1199-efi1.jpg
  • a = 19.761 (5) Å
  • b = 15.781 (4) Å
  • c = 14.395 (4) Å
  • β = 122.109 (3)°
  • V = 3802.4 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.919, T max = 0.939
  • 9669 measured reflections
  • 3428 independent reflections
  • 2477 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.115
  • S = 1.04
  • 3428 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015384/at2769sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015384/at2769Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Jiangxi Agricultural University for supporting this work.

supplementary crystallographic information

Comment

α-Aminophosphonate derivatives, as isosteres of natural aminocarboxylic acids, have attracted much attention in medicinal and pesticide chemistry in recent years due to their wide range of biological activities (Kafarski et al., 2001; De Lombaert et al., 1995; Du et al., 1999). In our previous work, a plenty of α-aminophosphonate derivatives containing fluorine atom and benzothiazole or iaoxazole moieties had been synthesized and some of them showed fungicidal (Yang et al.,2005) and antitumor activities (Song et al., 2005; Jin et al., 2006). And some crystals of α-aminophosphonate derivatives containing dialkyl had been reported in our previous works. However, It is noteworthy that a cystal of α-aminophosphonate containing dimethyl moiety was obtained for the first time. We report herein the crystal structure of the title compound.

As illustrated in Fig. 1, both the benzene ring with its conjunction carbon atom C8 and the benzothiazole ring with its conjunction nitrogen atom N1 are fairly planar, the dihedral angle between the planes of the benzothiazole group (C1–C7/N2/S1) and the benzene ring (C9–C14) is 119.05 °. The P atom exhibits a distorted tetrahedral configuration because the bond angles of O2—P1—O3 = 116.07 (11) ° and O2—P1—O4 = 114.04 (10) ° are significantly larger than that of O3—P1—O4 = 103.65 (10) °. The P1—C8 = 1.807 (2) Å is similar to the corresponding P—C value of 1.809 (3) Å found in diisopropyl [(benzoylamino)(phenyl)methyl] phosphonate (Fang et al., 2009) and a little shorter than normal P—C single bond length of 1.850 Å (Chen et al., 1987). The C5—N1 = 1.355 (3) Å is remarkably shorter than normal C—N 1.471 (3) Å (Alvarez et al., 2005) and close to the C = N = 1.343 (2) Å, similar to the corresponding bond length of 1.358 (3) Å of the 2-(1-piperidinyl)-1,3-benzothiazole (Alvarez et al., 2005). Meanwhile, the S1—C6 and S1—C5 with bond lengths of 1.742 (2) Å and 1.760 (2) Å, respectively, are shorter than the typical C—S of 1.811 (9) Å (Li et al., 2008). These indicate that the N1 atom and benzothiazole ring form a considerable delocalization of the electron density in which the N1 atom is sp2 hybridized. The molecular packing is consolidated through weak inter/intra molecular N—H···O, C—H···N, and C—H···F hydrogen bonding, C—H···π and π-π stacking interactions (Table 2, Fig. 2, Cg1 = ring (S1/N2/C4—C6); Cg3 = ring(C9–C14)). C—H···π interactions of methyl H atoms are established towards the π-systems of neighboring aromatic groups from 4-fluorophenyl and five rings of 6-methoxybenzothiazol-2-ylamino, with centroid-to-centroid distance are 2.99 (2), 2.96 (3) and 2.88 (2) Å, respectively. In the π-π stacking interactions between two close-by phenyl rings of 4-fluorophenyl, tThe centroid-to-centroid distance is 3.773 (4) Å.

Experimental

A mixture of 2-amino-6-methoxylbenzothiazole (0.9010 g, 5 mmol) and 4-fluorobenzaldehyde (0.6205 g, 5 mmol) and 20 ml toluene in a 50 ml dry flask affiliated a water separator was refluxed and stirred for 6 h. Toluene was removed by water separator and then dimethylphosphate (0.88 g, 8 mmol) was added into the flask, the reaction mixture was refluxed in a nonsolvent condition for 5 h. Residue was washed with water, filtered, dried, and crystallized three times from ethanol yielding title compound as colorless solid. The crystal suitable for X-ray analysis was obtained by slow evaporation of an anhydrous ethanol at room temperature over a period of ten days.

Refinement

H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.987 Å; N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C) for CH2, CH, NH, and 1.5Ueq(C) for CH3 .

Figures

Fig. 1.
The structure of the title compound, showing as 50% probability displacement ellipsoids.
Fig. 2.
A packing view of the title compound. N—H···O, C—H···O, C—H···N and C—H···F hydrogen bonds, C—H···π ...

Crystal data

C17H18FN2O4PSF(000) = 1648
Mr = 396.36Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5837 reflections
a = 19.761 (5) Åθ = 2.8–27.9°
b = 15.781 (4) ŵ = 0.29 mm1
c = 14.395 (4) ÅT = 296 K
β = 122.109 (3)°Block, colourless
V = 3802.4 (16) Å30.30 × 0.26 × 0.22 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer3428 independent reflections
Radiation source: fine-focus sealed tube2477 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.919, Tmax = 0.939k = −18→18
9669 measured reflectionsl = −15→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0545P)2 + 1.1262P] where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.07360 (4)0.28313 (4)0.06124 (5)0.0510 (2)
P10.20273 (4)0.09893 (4)−0.09266 (5)0.0483 (2)
N20.06939 (11)0.11776 (12)0.06276 (16)0.0477 (5)
C50.10708 (13)0.18124 (14)0.05470 (17)0.0421 (5)
C40.00865 (13)0.14714 (14)0.07713 (18)0.0445 (5)
C60.00177 (13)0.23554 (14)0.07921 (17)0.0438 (5)
C7−0.05321 (14)0.27298 (16)0.09682 (19)0.0524 (6)
H7−0.05680.33170.09810.063*
C1−0.10315 (14)0.22182 (16)0.11256 (19)0.0506 (6)
C3−0.04236 (14)0.09767 (16)0.0913 (2)0.0571 (7)
H3−0.03950.03900.08900.069*
C2−0.09822 (15)0.13484 (16)0.1089 (2)0.0563 (6)
H2−0.13260.10090.11840.068*
N10.16956 (11)0.17525 (12)0.04083 (17)0.0524 (5)
H10.19230.22090.03820.063*
C80.19929 (13)0.09419 (14)0.03023 (19)0.0452 (6)
H80.16050.05050.01960.054*
C90.27995 (14)0.06879 (14)0.12740 (18)0.0452 (6)
C110.37489 (18)−0.04111 (18)0.2316 (2)0.0659 (8)
H110.3884−0.09820.24390.079*
C100.30051 (17)−0.01584 (16)0.1484 (2)0.0560 (6)
H100.2630−0.05670.10490.067*
C140.33614 (15)0.12855 (17)0.1936 (2)0.0625 (7)
H140.32370.18590.18100.075*
C120.42812 (17)0.0196 (2)0.2955 (2)0.0684 (8)
C130.41102 (17)0.1034 (2)0.2788 (3)0.0751 (9)
H130.44890.14350.32380.090*
F10.50137 (11)−0.00510 (13)0.37934 (15)0.1064 (7)
O1−0.15552 (10)0.26361 (12)0.13111 (15)0.0658 (5)
C17−0.20925 (16)0.21423 (19)0.1466 (2)0.0707 (8)
H17A−0.24370.18220.08130.106*
H17B−0.24090.25110.16170.106*
H17C−0.17940.17620.20710.106*
O20.24876 (11)0.17048 (11)−0.09456 (13)0.0612 (5)
O40.23331 (10)0.01050 (10)−0.10441 (13)0.0555 (4)
O30.11234 (11)0.09795 (13)−0.18384 (15)0.0752 (6)
C160.31296 (19)−0.0033 (2)−0.0807 (3)0.0886 (10)
H16A0.32920.0444−0.10560.133*
H16B0.3138−0.0536−0.11770.133*
H16C0.3490−0.0101−0.00310.133*
C150.0861 (2)0.1088 (3)−0.2974 (3)0.1293 (16)
H15A0.11660.1532−0.30400.194*
H15B0.03050.1236−0.33860.194*
H15C0.09380.0569−0.32540.194*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0591 (4)0.0372 (4)0.0646 (4)−0.0040 (3)0.0382 (3)0.0005 (3)
P10.0512 (4)0.0440 (4)0.0452 (3)−0.0112 (3)0.0226 (3)−0.0035 (3)
N20.0461 (11)0.0395 (11)0.0582 (12)−0.0059 (9)0.0282 (10)−0.0038 (9)
C50.0426 (13)0.0393 (13)0.0389 (12)−0.0061 (10)0.0180 (11)−0.0032 (9)
C40.0451 (13)0.0396 (14)0.0455 (13)−0.0073 (10)0.0219 (11)−0.0049 (10)
C60.0455 (13)0.0416 (14)0.0425 (12)−0.0052 (11)0.0221 (11)−0.0035 (10)
C70.0572 (15)0.0428 (14)0.0582 (15)−0.0044 (12)0.0313 (13)−0.0054 (11)
C10.0490 (14)0.0532 (16)0.0514 (14)−0.0053 (12)0.0278 (12)−0.0090 (11)
C30.0579 (16)0.0412 (15)0.0777 (18)−0.0081 (12)0.0398 (15)−0.0053 (12)
C20.0549 (15)0.0535 (17)0.0678 (16)−0.0135 (12)0.0374 (14)−0.0064 (12)
N10.0529 (12)0.0390 (11)0.0741 (14)−0.0097 (9)0.0396 (11)−0.0039 (10)
C80.0488 (14)0.0367 (13)0.0547 (14)−0.0089 (11)0.0306 (12)−0.0056 (10)
C90.0538 (14)0.0431 (14)0.0464 (13)−0.0045 (11)0.0319 (12)−0.0008 (10)
C110.087 (2)0.0563 (18)0.0570 (16)0.0167 (16)0.0403 (17)0.0113 (14)
C100.0756 (18)0.0459 (16)0.0494 (14)−0.0029 (13)0.0352 (14)−0.0002 (11)
C140.0611 (17)0.0487 (16)0.0647 (17)−0.0037 (13)0.0247 (15)−0.0009 (13)
C120.0643 (18)0.079 (2)0.0573 (16)0.0179 (16)0.0290 (15)0.0111 (15)
C130.0598 (18)0.070 (2)0.0721 (19)−0.0062 (15)0.0192 (16)−0.0051 (15)
F10.0756 (12)0.1209 (17)0.0865 (13)0.0313 (11)0.0186 (10)0.0189 (11)
O10.0625 (11)0.0652 (12)0.0842 (13)−0.0062 (9)0.0488 (11)−0.0148 (10)
C170.0617 (18)0.087 (2)0.0781 (19)−0.0073 (15)0.0467 (16)−0.0076 (15)
O20.0787 (12)0.0477 (10)0.0626 (11)−0.0209 (9)0.0412 (10)−0.0049 (8)
O40.0680 (11)0.0442 (10)0.0622 (10)−0.0108 (8)0.0399 (9)−0.0105 (8)
O30.0579 (11)0.0853 (14)0.0560 (11)−0.0091 (10)0.0125 (10)0.0023 (10)
C160.093 (2)0.086 (2)0.125 (3)0.0037 (19)0.084 (2)0.003 (2)
C150.120 (3)0.149 (4)0.054 (2)−0.030 (3)0.003 (2)0.009 (2)

Geometric parameters (Å, °)

S1—C61.742 (2)C9—C141.381 (3)
S1—C51.760 (2)C9—C101.382 (3)
P1—O21.4593 (17)C11—C121.357 (4)
P1—O31.5560 (19)C11—C101.372 (4)
P1—O41.5653 (18)C11—H110.9300
P1—C81.807 (2)C10—H100.9300
N2—C51.290 (3)C14—C131.386 (4)
N2—C41.401 (3)C14—H140.9300
C5—N11.355 (3)C12—C131.355 (4)
C4—C31.373 (3)C12—F11.359 (3)
C4—C61.404 (3)C13—H130.9300
C6—C71.374 (3)O1—C171.427 (3)
C7—C11.384 (3)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C1—O11.368 (3)C17—H17C0.9600
C1—C21.379 (3)O4—C161.439 (3)
C3—C21.388 (3)O3—C151.438 (4)
C3—H30.9300C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
N1—C81.449 (3)C16—H16C0.9600
N1—H10.8600C15—H15A0.9600
C8—C91.513 (3)C15—H15B0.9600
C8—H80.9800C15—H15C0.9600
C6—S1—C588.47 (10)C14—C9—C8121.5 (2)
O2—P1—O3116.07 (11)C10—C9—C8120.1 (2)
O2—P1—O4114.04 (10)C12—C11—C10118.1 (3)
O3—P1—O4103.65 (10)C12—C11—H11120.9
O2—P1—C8113.48 (10)C10—C11—H11120.9
O3—P1—C8101.64 (11)C11—C10—C9121.7 (3)
O4—P1—C8106.64 (10)C11—C10—H10119.1
C5—N2—C4109.72 (19)C9—C10—H10119.1
N2—C5—N1125.0 (2)C9—C14—C13120.3 (3)
N2—C5—S1116.95 (17)C9—C14—H14119.9
N1—C5—S1118.01 (17)C13—C14—H14119.9
C3—C4—N2126.0 (2)C13—C12—C11122.6 (3)
C3—C4—C6118.4 (2)C13—C12—F1119.0 (3)
N2—C4—C6115.62 (19)C11—C12—F1118.4 (3)
C7—C6—C4121.8 (2)C12—C13—C14119.0 (3)
C7—C6—S1128.96 (18)C12—C13—H13120.5
C4—C6—S1109.24 (16)C14—C13—H13120.5
C6—C7—C1118.8 (2)C1—O1—C17118.1 (2)
C6—C7—H7120.6O1—C17—H17A109.5
C1—C7—H7120.6O1—C17—H17B109.5
O1—C1—C2124.3 (2)H17A—C17—H17B109.5
O1—C1—C7115.5 (2)O1—C17—H17C109.5
C2—C1—C7120.2 (2)H17A—C17—H17C109.5
C4—C3—C2120.3 (2)H17B—C17—H17C109.5
C4—C3—H3119.8C16—O4—P1123.11 (18)
C2—C3—H3119.8C15—O3—P1121.1 (2)
C1—C2—C3120.5 (2)O4—C16—H16A109.5
C1—C2—H2119.8O4—C16—H16B109.5
C3—C2—H2119.8H16A—C16—H16B109.5
C5—N1—C8121.96 (19)O4—C16—H16C109.5
C5—N1—H1119.0H16A—C16—H16C109.5
C8—N1—H1119.0H16B—C16—H16C109.5
N1—C8—C9115.05 (18)O3—C15—H15A109.5
N1—C8—P1107.14 (15)O3—C15—H15B109.5
C9—C8—P1110.28 (15)H15A—C15—H15B109.5
N1—C8—H8108.0O3—C15—H15C109.5
C9—C8—H8108.0H15A—C15—H15C109.5
P1—C8—H8108.0H15B—C15—H15C109.5
C14—C9—C10118.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.793 (3)156
C8—H8···N20.982.442.868 (4)106
C14—H14···N10.932.622.919 (5)100
C16—H16C···F1ii0.962.513.2496133
C15—H15B···Cg1iii0.962.993.608 (4)123
C16—H16B···Cg3iv0.962.963.549 (4)121
C17—H17C···Cg1v0.962.883.625 (3)136

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1, y, −z+1/2; (iii) −x, y, −z−1/2; (iv) −x+1/2, y+1/2, −z−1/2; (v) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2769).

References

  • Alvarez, R. G., Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2005). Acta Cryst. E61, o569–o570.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, R. Y. & Li, Y. G. (1987). Chemistry of Organic Phosphorus, p.38. Beijing: High Education Press.
  • De Lombaert, S., Blanchard, L., Tan, J., Sakane, Y., Berry, C. & Ghai, R. D. (1995). Bioorg. Med. Chem. Lett.5, 145–150.
  • Du, S. C., Faiger, H., Belakhov, V. & Timor Bassov, T. (1999). Bioorg. Med. Chem.7, 2671–2682. [PubMed]
  • Fang, H., Fang, M.-J., Xu, Y., Yu, W.-C. & Zhao, Y.-F. (2009). Acta Cryst. E65, o642. [PMC free article] [PubMed]
  • Jin, L. H., Song, B. A., Zhang, G. P., Xu, R. Q., Zhang, S. M., Gao, X. W., Hu, D. Y. & Yang, S. (2006). Bioorg. Med. Chem. Lett.16, 1537–1543. [PubMed]
  • Kafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. Anti-Cancer Agents, 1, 301–312. [PubMed]
  • Li, B., Zhang, S., Wang, Y. & Luo, S. (2008). Acta Cryst. E64, o1549. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chim. Sin 63, 1720–1726.
  • Yang, S., Song, B. A., Hong, Y. P., Jin, L. H. & Hu, D. Y. (2005). J. Chem. Crystallogr. 11, 891–895.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography