PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1209.
Published online 2009 May 7. doi:  10.1107/S1600536809016067
PMCID: PMC2969680

2-Acetonyl-2-hydroxy­indan-1,3-dione

Abstract

In the title compound, C12H10O4, the five-membered ring adopts an envelope conformation, with the Csp 3 atom at the flap [deviation = 0.145 (2) Å]. In the crystal structure, mol­ecules are linked by inter­molecular O—H(...)O and C—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For the activities and applications of ninhydrin derivatives, see: Ruhemann (1910 [triangle]); Kaiser et al. (1970 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1209-scheme1.jpg

Experimental

Crystal data

  • C12H10O4
  • M r = 218.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1209-efi1.jpg
  • a = 18.1190 (2) Å
  • b = 8.8135 (1) Å
  • c = 6.2585 (1) Å
  • V = 999.43 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.29 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.969, T max = 0.992
  • 14417 measured reflections
  • 1818 independent reflections
  • 1720 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.106
  • S = 1.18
  • 1818 reflections
  • 150 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016067/ci2791sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016067/ci2791Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship.

supplementary crystallographic information

Comment

Ninhydrin is used to detect α-amino acids, proteins and dipeptides. When it reacts with free amines, a deep blue or purple colour known as Ruhemann's purple (RP) is evolved (Ruhemann, 1910). Ninhydrin is also used to monitor deprotection in solid phase peptide synthesis (Kaiser Test) (Kaiser et al., 1970). It is one of the most widely used reagents for chemical development of fingerprints on porous surfaces. We herein present the crystal structure of the title compound, a derivative of ninhydrin.

Bond lengths (Allen et al., 1987) and angles in the title molecule (Fig. 1) are within normal ranges. The indan ring system (C1-C9) is almost planar, with a maximum deviation of 0.072 (1) Å for atom C9 while the dihedral angle formed by the benzene ring and the five-membered ring is 1.87 (8)°. The keto atom O1 lies 0.075 (2) Å from the indan plane whereas the keto atom O2 is displaced from the C1-C9 plane by 0.184 (2) Å. The five-membered ring adopts an envelope conformation, with atom C9 at the flap [deviation 0.145 (2) Å]. The C2—C1—C9—O3 torsion angle is 103.16 (14) Å.

In the crystal structure (Fig. 2), the molecules are linked by intermolecular O3—H1O3···O2 and C3—H3A···O4 hydrogen bonds (Table 1) into a two-dimensional network parallel to the (100). The adjacent networks are linked via C12—H12A···O4 hydrogen bonds to form a three-dimensional network.

Experimental

The title compound was synthesized by the reaction of ninhydrin (1.78 g), trichloroacetic acid (1.64 g) and catalytic amount of magnesium in presence of acetone. Ninhydrin and tricholoro acetic acid in molar ratio 1:1 were allowed to reflux with acetone in presence of Mg turnings for 1 h. The reaction mixture was dried under reduced pressure and was purified by chromatography over silica gel column. Elution of the column with petroleum ether-diethyl ether (4:1) followed by crystallization with petroleum ether-chloroform (1:1) afforded fine crystals of the title compound (120 mg, m.p. 399 K).

Refinement

Atom H1O3 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.97 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl group. In the absence of significant anomalous dispersion, 1513 Friedel pairs were merged for the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H10O4F(000) = 456
Mr = 218.20Dx = 1.450 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5199 reflections
a = 18.1190 (2) Åθ = 3.2–31.5°
b = 8.8135 (1) ŵ = 0.11 mm1
c = 6.2585 (1) ÅT = 100 K
V = 999.43 (2) Å3Plate, yellow
Z = 40.29 × 0.19 × 0.08 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1818 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 31.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −26→26
Tmin = 0.969, Tmax = 0.992k = −12→13
14417 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.18w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0468P] where P = (Fo2 + 2Fc2)/3
1818 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.13189 (7)0.07160 (14)0.5143 (2)0.0217 (3)
O20.21514 (6)0.36656 (13)1.0967 (2)0.0158 (2)
O30.27231 (6)0.16183 (13)0.7536 (2)0.0153 (2)
O40.06202 (6)0.15803 (14)1.0224 (2)0.0165 (3)
C10.14680 (8)0.17868 (17)0.6278 (3)0.0130 (3)
C20.12208 (8)0.33840 (16)0.6024 (3)0.0121 (3)
C30.07836 (8)0.40053 (18)0.4425 (3)0.0145 (3)
H3A0.06090.34150.33010.017*
C40.06148 (8)0.55486 (19)0.4566 (3)0.0161 (3)
H4A0.03140.59910.35350.019*
C50.08914 (9)0.64417 (18)0.6239 (3)0.0163 (3)
H5A0.07840.74730.62730.020*
C60.13236 (8)0.58104 (17)0.7850 (3)0.0144 (3)
H6A0.15020.64010.89670.017*
C70.14801 (8)0.42619 (16)0.7731 (3)0.0115 (3)
C80.18969 (8)0.32969 (16)0.9244 (3)0.0115 (3)
C90.19764 (8)0.17061 (16)0.8252 (3)0.0107 (3)
C100.17882 (8)0.04091 (17)0.9758 (3)0.0125 (3)
H10A0.1889−0.05470.90490.015*
H10B0.21030.04701.10080.015*
C110.09891 (8)0.04343 (17)1.0464 (3)0.0121 (3)
C120.06798 (9)−0.10028 (18)1.1373 (3)0.0173 (3)
H12A0.0295−0.07631.23710.026*
H12B0.1064−0.15521.20920.026*
H12C0.0482−0.16141.02400.026*
H1O30.2777 (12)0.069 (3)0.713 (5)0.029 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0303 (6)0.0148 (5)0.0200 (6)0.0013 (4)−0.0085 (5)−0.0058 (5)
O20.0176 (5)0.0137 (5)0.0161 (6)0.0002 (4)−0.0044 (5)−0.0035 (4)
O30.0116 (5)0.0132 (5)0.0211 (6)0.0002 (4)0.0044 (5)−0.0038 (4)
O40.0150 (5)0.0170 (5)0.0174 (6)0.0032 (4)0.0002 (5)−0.0008 (5)
C10.0142 (6)0.0114 (6)0.0133 (7)−0.0005 (5)−0.0010 (6)−0.0014 (5)
C20.0127 (6)0.0113 (6)0.0124 (7)0.0001 (4)0.0006 (5)−0.0010 (5)
C30.0153 (6)0.0160 (7)0.0123 (7)−0.0008 (5)−0.0012 (6)0.0003 (6)
C40.0159 (6)0.0167 (7)0.0156 (7)0.0019 (5)−0.0010 (6)0.0044 (6)
C50.0182 (6)0.0127 (6)0.0181 (8)0.0030 (5)0.0002 (6)0.0011 (6)
C60.0156 (6)0.0111 (6)0.0165 (7)0.0012 (5)−0.0008 (6)−0.0022 (6)
C70.0119 (6)0.0105 (6)0.0122 (7)0.0004 (4)0.0004 (5)0.0000 (5)
C80.0095 (5)0.0114 (6)0.0135 (7)−0.0011 (5)0.0002 (5)−0.0017 (5)
C90.0097 (5)0.0099 (6)0.0125 (6)0.0008 (4)0.0002 (5)−0.0016 (5)
C100.0117 (6)0.0106 (6)0.0152 (7)0.0008 (4)0.0009 (5)0.0006 (5)
C110.0125 (6)0.0142 (6)0.0097 (6)−0.0006 (5)−0.0007 (5)−0.0019 (5)
C120.0177 (7)0.0147 (7)0.0195 (8)−0.0027 (5)0.0039 (6)−0.0004 (6)

Geometric parameters (Å, °)

O1—C11.212 (2)C5—H5A0.93
O2—C81.217 (2)C6—C71.396 (2)
O3—C91.4273 (17)C6—H6A0.93
O3—H1O30.86 (3)C7—C81.480 (2)
O4—C111.2205 (19)C8—C91.540 (2)
C1—C21.486 (2)C9—C101.521 (2)
C1—C91.542 (2)C10—C111.514 (2)
C2—C31.389 (2)C10—H10A0.97
C2—C71.400 (2)C10—H10B0.97
C3—C41.397 (2)C11—C121.498 (2)
C3—H3A0.93C12—H12A0.96
C4—C51.402 (2)C12—H12B0.96
C4—H4A0.93C12—H12C0.96
C5—C61.393 (2)
C9—O3—H1O3104.5 (16)O2—C8—C9124.39 (14)
O1—C1—C2127.44 (16)C7—C8—C9108.24 (14)
O1—C1—C9124.53 (14)O3—C9—C10111.50 (12)
C2—C1—C9108.02 (12)O3—C9—C8105.33 (11)
C3—C2—C7121.55 (13)C10—C9—C8114.42 (14)
C3—C2—C1128.51 (15)O3—C9—C1108.50 (13)
C7—C2—C1109.92 (14)C10—C9—C1113.41 (12)
C2—C3—C4117.60 (15)C8—C9—C1103.00 (12)
C2—C3—H3A121.2C11—C10—C9112.60 (12)
C4—C3—H3A121.2C11—C10—H10A109.1
C3—C4—C5121.03 (15)C9—C10—H10A109.1
C3—C4—H4A119.5C11—C10—H10B109.1
C5—C4—H4A119.5C9—C10—H10B109.1
C6—C5—C4121.14 (14)H10A—C10—H10B107.8
C6—C5—H5A119.4O4—C11—C12122.79 (14)
C4—C5—H5A119.4O4—C11—C10120.01 (14)
C5—C6—C7117.80 (15)C12—C11—C10117.16 (13)
C5—C6—H6A121.1C11—C12—H12A109.5
C7—C6—H6A121.1C11—C12—H12B109.5
C6—C7—C2120.84 (15)H12A—C12—H12B109.5
C6—C7—C8129.16 (15)C11—C12—H12C109.5
C2—C7—C8109.98 (13)H12A—C12—H12C109.5
O2—C8—C7127.35 (14)H12B—C12—H12C109.5
O1—C1—C2—C3−1.6 (3)C2—C7—C8—C96.84 (16)
C9—C1—C2—C3177.10 (15)O2—C8—C9—O3−74.26 (18)
O1—C1—C2—C7176.83 (17)C7—C8—C9—O3104.64 (14)
C9—C1—C2—C7−4.49 (17)O2—C8—C9—C1048.55 (19)
C7—C2—C3—C40.5 (2)C7—C8—C9—C10−132.56 (13)
C1—C2—C3—C4178.78 (15)O2—C8—C9—C1172.10 (14)
C2—C3—C4—C51.4 (2)C7—C8—C9—C1−9.00 (15)
C3—C4—C5—C6−2.1 (3)O1—C1—C9—O375.56 (19)
C4—C5—C6—C70.8 (2)C2—C1—C9—O3−103.16 (14)
C5—C6—C7—C21.1 (2)O1—C1—C9—C10−48.9 (2)
C5—C6—C7—C8−177.55 (15)C2—C1—C9—C10132.37 (13)
C3—C2—C7—C6−1.8 (2)O1—C1—C9—C8−173.13 (16)
C1—C2—C7—C6179.63 (14)C2—C1—C9—C88.15 (16)
C3—C2—C7—C8177.09 (14)O3—C9—C10—C11−177.41 (13)
C1—C2—C7—C8−1.45 (17)C8—C9—C10—C1163.19 (17)
C6—C7—C8—O24.5 (3)C1—C9—C10—C11−54.58 (17)
C2—C7—C8—O2−174.31 (15)C9—C10—C11—O4−16.2 (2)
C6—C7—C8—C9−174.36 (15)C9—C10—C11—C12161.75 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.86 (3)1.93 (3)2.7907 (16)174 (3)
C3—H3A···O4ii0.932.513.401 (2)159
C12—H12A···O4iii0.962.543.408 (2)150

Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) x, y, z−1; (iii) −x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2791).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem 34, 595–598. [PubMed]
  • Ruhemann, S. (1910). J. Chem. Soc.97, 1440, 2025–2031.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography