PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1285.
Published online 2009 May 14. doi:  10.1107/S160053680901722X
PMCID: PMC2969679

6-(4-Nitro­phen­oxy)hexa­nol

Abstract

The title compound, C12H17NO4, features an almost planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.070 Å). All methyl­ene C—C bonds adopt an anti­periplanar conformation. In the crystal structure the mol­ecules lie in planes parallel to (1An external file that holds a picture, illustration, etc.
Object name is e-65-o1285-efi1.jpg2) and the packing is stabilized by O—H(...)O hydrogen bonds.

Related literature

For background material on polymers and their properties, see: Manners (1999 [triangle]); Jarzabek et al. (1999 [triangle]) Schab-Balcerzak et al. (2002 [triangle]); Choi et al. (2004 [triangle]); Hsiao & Lin (2004 [triangle]); Shao et al. (2007 [triangle]); Shockravi et al. (2007 [triangle]); Yin et al. (1998 [triangle]). For studies on a related compound, see: Saeed et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1285-scheme1.jpg

Experimental

Crystal data

  • C12H17NO4
  • M r = 239.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1285-efi2.jpg
  • a = 5.4410 (7) Å
  • b = 10.2270 (11) Å
  • c = 11.3333 (14) Å
  • α = 96.993 (9)°
  • β = 103.818 (10)°
  • γ = 99.516 (10)°
  • V = 595.34 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.25 × 0.24 × 0.12 mm

Data collection

  • STOE IPDS II diffractometer
  • Absorption correction: none
  • 5002 measured reflections
  • 2105 independent reflections
  • 1694 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.185
  • S = 1.04
  • 2105 reflections
  • 159 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S160053680901722X/tk2444sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901722X/tk2444Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, and the Institute for Inorganic Chemistry, University of Frankfurt, for providing laboratory and analytical facilities.

supplementary crystallographic information

Comment

Polymers are ubiquitous because of their tremendous processing advantage over ceramics and metals (Manners, 1999). Therefore, much research in recent years has focused upon producing speciality polymers with a better balance of properties (Shockravi et al., 2007). The goal can be achieved by inducing desired modifications in the polymer core structure (Saeed et al., 2008). Flexible linkages such as for the aryl-ether moiety (Shao et al., 2007) and/or methylene spacers (Yin et al., 1998) can be introduced into the macro chain in order to obtain desirable polymers. It has been recognized that the incorporation of an aryl-ether moiety generally imparts enhanced solubility and processability while maintaining the toughness of the polymers (Hsiao & Lin, 2004). Moreover, the addition of aliphatic methylene spacers between the aromatic moieties increases the degree of freedom by reducing the segmental barrier and effectively disrupts potential intermolecular interactions (Schab-Balcerzak et al., 2002). Furthermore, the inclusion of these flexible linkages in the polymer core structure also imparts mesogenic (Choi et al., 2004) and optical properties (Jarzabek et al., 1999) to the resulting polymer. Thus, the final polymer produced by the introduction of these linkages exhibits not an enhancement in its processability but also an improvement in its performance (Jarzabek et al., 1999). The title compound, (I), Fig. 1, is a flexible nitro-alcohol precursor with built-in aliphatic (methylene) groups along with aryl-ether moiety, which was prepared as part of our quest to design and synthesize structurally modified monomers for processable high performance polymers (Saeed et al., 2008).

Experimental

The title compound (I) was synthesized by Williamson's etherification of 1,6-hexane diol and p-nitrochlorobenzene. A three-necked round bottom flask equipped with reflux condenser, thermometer and nitrogen inlet was charged with a suspension of 1,6-hexane diol (2.5 g; 21 mmol) and anhydrous potassium carbonate (2.93 g; 21 mmol) in dimethylformamide (60 ml) and stirred for 30 mins. Then p-nitrochlorobenzene (3.33 g; 21 mmol) was added dropwise to the suspension and the resulting mixture was heated to 383 K for 6 h. The reaction mixture was poured into 500 ml of chilled water, cooled to room temperature and the crude product was filtered as a light-yellow solid mass. The product was then washed thoroughly with water, dissolved in ethanol and set aside for crystallization. Yield 74%, m.p. 357 K.

Refinement

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H(aromatic) = 0.95Å and CH(methylene) = 0.99 Å. The hydroxyl-H was refined freely; O—H = 0.83 (5) Å.

Figures

Fig. 1.
Perspective view of (I) with the atom numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Crystal data

C12H17NO4Z = 2
Mr = 239.27F(000) = 256
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4410 (7) ÅCell parameters from 4859 reflections
b = 10.2270 (11) Åθ = 3.8–25.6°
c = 11.3333 (14) ŵ = 0.10 mm1
α = 96.993 (9)°T = 173 K
β = 103.818 (10)°Plate, yellow
γ = 99.516 (10)°0.25 × 0.24 × 0.12 mm
V = 595.34 (12) Å3

Data collection

STOE IPDS II two-circle-diffractometer1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
graphiteθmax = 25.0°, θmin = 3.8°
ω scansh = −6→6
5002 measured reflectionsk = −12→12
2105 independent reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185w = 1/[σ2(Fo2) + (0.1186P)2 + 0.0716P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2105 reflectionsΔρmax = 0.31 e Å3
159 parametersΔρmin = −0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7262 (3)0.23792 (17)−0.02359 (16)0.0296 (4)
O10.1593 (3)1.17994 (15)0.78559 (16)0.0418 (5)
H10.058 (9)1.200 (5)0.826 (4)0.107 (15)*
O20.2906 (3)0.47709 (14)0.32079 (13)0.0310 (4)
O30.6941 (3)0.11523 (15)−0.04278 (16)0.0428 (5)
O40.8558 (3)0.30971 (15)−0.07523 (14)0.0385 (5)
C10.0903 (4)1.0372 (2)0.7533 (2)0.0321 (5)
H1A−0.09801.00870.71530.039*
H1B0.13490.99540.82780.039*
C20.2376 (4)0.9931 (2)0.6628 (2)0.0313 (5)
H2A0.42481.01510.70460.038*
H2B0.20811.04440.59380.038*
C30.1586 (4)0.8432 (2)0.6108 (2)0.0297 (5)
H3A0.18950.79160.67950.036*
H3B−0.02870.82090.56930.036*
C40.3067 (4)0.8006 (2)0.51947 (19)0.0304 (5)
H4A0.28060.85470.45250.036*
H4B0.49350.82070.56200.036*
C50.2263 (4)0.6526 (2)0.46311 (19)0.0307 (5)
H5A0.25550.59750.52920.037*
H5B0.03950.63140.42050.037*
C60.3777 (4)0.6177 (2)0.37264 (19)0.0310 (5)
H6A0.35050.67290.30640.037*
H6B0.56450.63650.41500.037*
C110.4034 (4)0.4260 (2)0.23531 (18)0.0259 (5)
C120.5917 (4)0.5012 (2)0.19465 (19)0.0292 (5)
H120.64920.59480.22550.035*
C130.6963 (4)0.4383 (2)0.10791 (19)0.0289 (5)
H130.82530.48860.07850.035*
C140.6111 (4)0.3028 (2)0.06527 (18)0.0260 (5)
C150.4211 (4)0.2257 (2)0.10414 (19)0.0305 (5)
H150.36490.13210.07340.037*
C160.3156 (4)0.2890 (2)0.18899 (19)0.0295 (5)
H160.18240.23890.21600.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0340 (9)0.0249 (9)0.0317 (9)0.0102 (7)0.0134 (8)−0.0030 (7)
O10.0510 (10)0.0244 (8)0.0567 (11)0.0068 (7)0.0347 (9)−0.0067 (7)
O20.0334 (8)0.0262 (8)0.0349 (8)0.0050 (6)0.0182 (7)−0.0067 (6)
O30.0568 (11)0.0237 (9)0.0532 (10)0.0128 (7)0.0276 (8)−0.0055 (7)
O40.0477 (10)0.0330 (9)0.0428 (9)0.0097 (7)0.0290 (8)0.0012 (6)
C10.0358 (11)0.0231 (11)0.0404 (12)0.0063 (8)0.0196 (9)−0.0037 (8)
C20.0319 (11)0.0290 (12)0.0348 (11)0.0060 (9)0.0171 (9)−0.0043 (9)
C30.0291 (10)0.0280 (11)0.0339 (11)0.0088 (8)0.0142 (9)−0.0041 (8)
C40.0298 (10)0.0289 (11)0.0340 (11)0.0071 (9)0.0153 (9)−0.0037 (8)
C50.0314 (11)0.0314 (12)0.0315 (11)0.0092 (9)0.0149 (9)−0.0029 (8)
C60.0366 (11)0.0260 (11)0.0322 (11)0.0080 (9)0.0168 (9)−0.0057 (8)
C110.0271 (10)0.0270 (11)0.0256 (10)0.0098 (8)0.0109 (8)−0.0022 (8)
C120.0338 (11)0.0227 (10)0.0317 (11)0.0054 (8)0.0141 (8)−0.0040 (8)
C130.0327 (10)0.0247 (10)0.0316 (11)0.0061 (8)0.0155 (9)−0.0013 (8)
C140.0292 (10)0.0246 (11)0.0258 (10)0.0098 (8)0.0108 (8)−0.0030 (8)
C150.0361 (11)0.0208 (10)0.0346 (11)0.0066 (8)0.0128 (9)−0.0039 (8)
C160.0316 (10)0.0242 (11)0.0343 (11)0.0038 (8)0.0160 (9)−0.0011 (8)

Geometric parameters (Å, °)

N1—O31.223 (2)C4—H4A0.9900
N1—O41.228 (2)C4—H4B0.9900
N1—C141.457 (2)C5—C61.506 (3)
O1—C11.425 (2)C5—H5A0.9900
O1—H10.83 (5)C5—H5B0.9900
O2—C111.362 (2)C6—H6A0.9900
O2—C61.441 (2)C6—H6B0.9900
C1—C21.516 (3)C11—C121.381 (3)
C1—H1A0.9900C11—C161.395 (3)
C1—H1B0.9900C12—C131.392 (3)
C2—C31.525 (3)C12—H120.9500
C2—H2A0.9900C13—C141.373 (3)
C2—H2B0.9900C13—H130.9500
C3—C41.522 (3)C14—C151.385 (3)
C3—H3A0.9900C15—C161.381 (3)
C3—H3B0.9900C15—H150.9500
C4—C51.517 (3)C16—H160.9500
O3—N1—O4122.51 (16)C6—C5—H5A109.5
O3—N1—C14119.32 (17)C4—C5—H5A109.5
O4—N1—C14118.16 (16)C6—C5—H5B109.5
C1—O1—H1105 (3)C4—C5—H5B109.5
C11—O2—C6117.46 (15)H5A—C5—H5B108.0
O1—C1—C2108.19 (17)O2—C6—C5108.46 (17)
O1—C1—H1A110.1O2—C6—H6A110.0
C2—C1—H1A110.1C5—C6—H6A110.0
O1—C1—H1B110.1O2—C6—H6B110.0
C2—C1—H1B110.1C5—C6—H6B110.0
H1A—C1—H1B108.4H6A—C6—H6B108.4
C1—C2—C3113.07 (17)O2—C11—C12123.92 (18)
C1—C2—H2A109.0O2—C11—C16115.44 (17)
C3—C2—H2A109.0C12—C11—C16120.64 (17)
C1—C2—H2B109.0C11—C12—C13119.14 (19)
C3—C2—H2B109.0C11—C12—H12120.4
H2A—C2—H2B107.8C13—C12—H12120.4
C4—C3—C2112.49 (18)C14—C13—C12119.37 (19)
C4—C3—H3A109.1C14—C13—H13120.3
C2—C3—H3A109.1C12—C13—H13120.3
C4—C3—H3B109.1C13—C14—C15122.40 (18)
C2—C3—H3B109.1C13—C14—N1118.70 (18)
H3A—C3—H3B107.8C15—C14—N1118.90 (18)
C5—C4—C3113.70 (17)C16—C15—C14118.02 (18)
C5—C4—H4A108.8C16—C15—H15121.0
C3—C4—H4A108.8C14—C15—H15121.0
C5—C4—H4B108.8C15—C16—C11120.41 (18)
C3—C4—H4B108.8C15—C16—H16119.8
H4A—C4—H4B107.7C11—C16—H16119.8
C6—C5—C4110.92 (17)
O1—C1—C2—C3−173.95 (17)C12—C13—C14—C150.9 (3)
C1—C2—C3—C4179.61 (18)C12—C13—C14—N1−178.77 (17)
C2—C3—C4—C5−178.18 (17)O3—N1—C14—C13164.72 (18)
C3—C4—C5—C6179.28 (17)O4—N1—C14—C13−14.2 (3)
C11—O2—C6—C5179.40 (16)O3—N1—C14—C15−14.9 (3)
C4—C5—C6—O2−179.08 (16)O4—N1—C14—C15166.11 (19)
C6—O2—C11—C12−1.1 (3)C13—C14—C15—C16−0.1 (3)
C6—O2—C11—C16179.11 (16)N1—C14—C15—C16179.60 (18)
O2—C11—C12—C13179.23 (18)C14—C15—C16—C11−1.3 (3)
C16—C11—C12—C13−1.0 (3)O2—C11—C16—C15−178.36 (18)
C11—C12—C13—C14−0.4 (3)C12—C11—C16—C151.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.83 (5)2.10 (5)2.905 (2)163 (4)

Symmetry codes: (i) x−1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2444).

References

  • Choi, E. J., Ahn, J. C., Chien, L. C., Lee, C. K., Zin, W. C., Kim, D. C. & Shin, S. T. (2004). Macromolecules, 37, 71–78.
  • Hsiao, S. H. & Lin, K. H. (2004). Polymer, 45, 7877–7885.
  • Jarzabek, B., Schab-Balcerzak, E., Chamenko, T., Sek. D., Cisowski, J., Shiotani, A. & Kohda, M. (1999). J. Appl. Polym. Sci.74, 2404–2413.
  • Manners, I. (1999). Pure Appl. Chem.71, 1471–1476.
  • Saeed, M. A., Akhter, Z., Khan, M. S., Iqbal, N. & Butt, M. S. (2008). Polym. Degrad. Stab.93, 1762–1769.
  • Schab-Balcerzak, E., Sek, D., Volozhin, A., Chamenko, T. & Jarzabek, B. (2002). Eur. Polym. J.38, 423–430.
  • Shao, Y., Li, Y., Zhao, X., Ma, T., Gong, C. & Yang, F. (2007). Eur. Polym. J.43, 4389–4397.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shockravi, A., Mehdipour-Ataei, S., Abouzari-Lotf, E. & Zakeri, M. (2007). Eur. Polym. J.43, 620–627.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Yin, J., Ye, Y. F. & Wang, Z. G. (1998). Eur. Polym. J.34, 1839–1843.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography