PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1327.
Published online 2009 May 20. doi:  10.1107/S1600536809018066
PMCID: PMC2969676

2,5-Bis(bromo­meth­yl)biphen­yl

Abstract

In the title compound, C14H12Br2, the Br atoms lie on opposite sides of their ring plane. The biphenyl inter­planar angle is 53.52 (8)°. The packing is characterized by several H(...)Br contacts to each Br atom, but at long distances of 3.07–3.43 Å.

Related literature

For the structures of bromo­methyl-substituted aromatic ring systems, see: Jones & Kuś (2005 [triangle], 2007 [triangle]); Jones et al. (2007 [triangle]). For the synthesis, see: Czuchajowski & Zemanek (1990 [triangle]); For a related structure with a similar conformation, see: Obrey et al. (2002 [triangle]). For the phenomenon of tertiary contacts, see: Du Mont et al. (2008 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-o1327-scheme1.jpg

Experimental

Crystal data

  • C14H12Br2
  • M r = 340.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1327-efi1.jpg
  • a = 33.084 (4) Å
  • b = 4.3354 (6) Å
  • c = 18.017 (2) Å
  • β = 103.702 (4)°
  • V = 2510.7 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.43 mm−1
  • T = 133 K
  • 0.25 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.316, T max = 0.566 (expected range = 0.294–0.526)
  • 18269 measured reflections
  • 3120 independent reflections
  • 2518 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.05
  • 3120 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 1.00 e Å−3
  • Δρmin = −1.00 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
H(...)Br contacts (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018066/bt2951sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018066/bt2951Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

We are interested in the structures of bromomethyl-substituted aromatic ring systems, compounds that are often used as synthestic intermediates; e.g. various bromomethylbenzenes (Jones & Kuś, 2007), 2,2"- and 2',5'- bis(bromomethyl)-p-terphenyl (Jones & Kuś, 2005; Jones et al., 2007). The packing patterns are often characterized by secondary interactions such as C—H···Br, Br···Br and C—H···π.

As a part of the synthesis of phenyl derivatives of [2.2]paracyclophane (Czuchajowski & Zemanek 1990), 2,5-di(bromomethyl)biphenyl (1) was obtained by bromination of 2,5-dimethylbiphenyl. Here we present its structure (Fig. 1).

Bond lengths and angles may be regarded as normal (e.g. the single bond between the rings is 1.486 (4) Å; ring angles at the substituted atoms C1, C2, C5 are all about 1° less than the ideal 120°). The interplanar angle is 53.52 (8)°. The bromomethyl groups adopt an anti-conformation whereby Br1 and Br2 lie out of their ring plane by 1.680 (4) and -1.736 (4) Å; associated torsion angles are C3—C2—C7—Br1 - 77.2 (3) and C4—C5—C8—Br2 - 87.9 (3)°. A similar conformation was observed in 2,6-di(bromomethyl)biphenyl (Obrey et al., 2002), whereas 2',5'-di(bromomethyl)-p-terphenyl adopts a syn-conformation (Jones et al. 2007).

The packing (Fig. 2) appears at first sight to be characterized by an almost total lack of secondary contacts. The shortest H···Br contact is H12···Br1 3.07 Å (operator 0.5 - x,-1/2 + y,0.5 - z) and there are no other H···Br < 3.19 Å; there are no Br···Br contacts < 4.2 Å and no H···π contacts < 2.95 Å (and these with very narrow angles). Both bromine atoms however are situated in a pocket surrounded by several H atoms; Br1 by six H at distances of 3.07–3.43, Br2 by eight H from 3.20–3.43 Å. This corresponds to the phenomenon of tertiary contacts as postulated by Du Mont et al. (2008).

Experimental

The title compound was obtained from 2,5-dimethylbiphenyl according to the method of Czuchajowski & Zemanek (1990). The analytical and spectroscopic data are consistent with the literature. Single crystals were grown by slow evaporation of a hexane solution. NMR data for (1): 1H NMR (CDCl3, 400 MHz): δ 7.52 (d, 1H), 7.50–7.39 (m, 6H), 7.29 (d, 1H), 4.50 (s, 2H), 4.44(s, 2H); 13C NMR (100 MHz): δ 142.54, 139.57, 138.07, 135.46, 131.53, 131.03, 128.94, 128.61, 128.44, 127.77, 32.75, 31.58.

Refinement

H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic) or 0.99 Å (CH2) Å; Uiso(H) values were fixed at 1.2Ueq of the parent C atom. Largest difference peaks of ±1.0 e Å-3 near the bromine atoms may be attributed to residual absorption errors.

Figures

Fig. 1.
The title compound in the crystal. Displacement ellipsoids represent 50% probability levels.
Fig. 2.
Packing diagram of the title compound viewed parallel to the short b axis.

Crystal data

C14H12Br2F(000) = 1328
Mr = 340.06Dx = 1.799 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.084 (4) ÅCell parameters from 6730 reflections
b = 4.3354 (6) Åθ = 2.3–28.8°
c = 18.017 (2) ŵ = 6.43 mm1
β = 103.702 (4)°T = 133 K
V = 2510.7 (5) Å3Prism, colourless
Z = 80.25 × 0.10 × 0.10 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3120 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 8.192 pixels mm-1θmax = 28.3°, θmin = 1.3°
[var phi] and ω scansh = −44→44
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −5→5
Tmin = 0.316, Tmax = 0.566l = −24→24
18269 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0515P)2 + 1.9201P] where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = −1.00 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.219743 (8)0.60712 (7)0.152339 (16)0.02600 (10)
Br2−0.025878 (8)0.25836 (8)0.108852 (19)0.03229 (11)
C10.11964 (8)0.5306 (6)0.22477 (14)0.0176 (5)
C20.13425 (8)0.6193 (6)0.16080 (15)0.0179 (5)
C30.11266 (8)0.5205 (7)0.08827 (15)0.0209 (5)
H30.12190.58560.04470.025*
C40.07831 (9)0.3310 (7)0.07839 (17)0.0244 (6)
H40.06470.26210.02870.029*
C50.06355 (8)0.2407 (6)0.14127 (17)0.0222 (6)
C60.08387 (8)0.3445 (7)0.21324 (16)0.0209 (6)
H60.07330.28830.25600.025*
C70.17006 (8)0.8325 (7)0.16619 (16)0.0211 (6)
H7A0.17650.93470.21680.025*
H7B0.16250.99420.12650.025*
C80.02710 (8)0.0280 (7)0.13151 (19)0.0304 (7)
H8A0.0294−0.09370.17880.037*
H8B0.0273−0.11760.08930.037*
C110.14006 (8)0.6257 (7)0.30405 (14)0.0187 (5)
C120.18247 (9)0.5758 (7)0.33539 (16)0.0247 (6)
H120.19890.47830.30560.030*
C130.20058 (9)0.6669 (8)0.40922 (17)0.0300 (7)
H130.22930.62880.43000.036*
C140.17707 (10)0.8145 (8)0.45354 (17)0.0306 (7)
H140.18980.88220.50380.037*
C150.13489 (9)0.8614 (8)0.42342 (16)0.0279 (7)
H150.11860.96150.45320.033*
C160.11642 (9)0.7626 (7)0.34998 (16)0.0225 (6)
H160.08730.78830.33060.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01373 (14)0.03068 (18)0.03439 (16)−0.00368 (11)0.00730 (10)−0.00446 (13)
Br20.01203 (15)0.0309 (2)0.0514 (2)−0.00186 (11)0.00244 (12)0.00305 (14)
C10.0114 (11)0.0171 (13)0.0231 (12)0.0036 (10)0.0018 (9)0.0018 (11)
C20.0130 (11)0.0162 (13)0.0236 (12)0.0016 (10)0.0027 (9)0.0000 (11)
C30.0177 (12)0.0208 (14)0.0234 (12)0.0028 (11)0.0036 (10)0.0026 (11)
C40.0165 (13)0.0260 (15)0.0273 (14)0.0032 (11)−0.0013 (10)−0.0023 (12)
C50.0120 (12)0.0158 (14)0.0371 (15)0.0029 (10)0.0025 (11)−0.0001 (12)
C60.0135 (12)0.0208 (14)0.0278 (13)0.0025 (10)0.0033 (10)0.0051 (11)
C70.0174 (13)0.0201 (14)0.0264 (13)0.0016 (11)0.0064 (10)0.0013 (11)
C80.0137 (13)0.0213 (15)0.0528 (19)0.0011 (12)0.0009 (12)0.0013 (14)
C110.0139 (12)0.0221 (14)0.0194 (12)0.0007 (10)0.0027 (9)0.0045 (11)
C120.0162 (13)0.0326 (17)0.0252 (13)0.0037 (12)0.0049 (10)−0.0003 (12)
C130.0156 (13)0.045 (2)0.0266 (14)0.0033 (13)−0.0003 (11)0.0033 (14)
C140.0276 (16)0.0415 (19)0.0209 (13)−0.0006 (14)0.0018 (11)0.0002 (13)
C150.0260 (15)0.0366 (18)0.0233 (13)0.0043 (13)0.0104 (11)0.0026 (13)
C160.0174 (13)0.0252 (16)0.0254 (13)0.0055 (11)0.0059 (10)0.0057 (12)

Geometric parameters (Å, °)

Br1—C71.978 (3)C14—C151.387 (4)
Br2—C81.974 (3)C15—C161.387 (4)
C1—C21.405 (4)C3—H30.9500
C1—C61.407 (4)C4—H40.9500
C1—C111.486 (4)C6—H60.9500
C2—C31.400 (4)C7—H7A0.9900
C2—C71.487 (4)C7—H7B0.9900
C3—C41.379 (4)C8—H8A0.9900
C4—C51.392 (4)C8—H8B0.9900
C5—C61.387 (4)C12—H120.9500
C5—C81.495 (4)C13—H130.9500
C11—C161.398 (4)C14—H140.9500
C11—C121.400 (4)C15—H150.9500
C12—C131.381 (4)C16—H160.9500
C13—C141.395 (4)
C2—C1—C6118.5 (2)C3—C4—H4120.0
C2—C1—C11123.1 (2)C5—C4—H4120.0
C6—C1—C11118.4 (2)C5—C6—H6119.0
C3—C2—C1118.9 (2)C1—C6—H6119.0
C3—C2—C7118.3 (2)C2—C7—H7A109.4
C1—C2—C7122.7 (2)Br1—C7—H7A109.4
C4—C3—C2121.7 (3)C2—C7—H7B109.4
C3—C4—C5120.0 (3)Br1—C7—H7B109.4
C6—C5—C4119.0 (3)H7A—C7—H7B108.0
C6—C5—C8120.6 (3)C5—C8—H8A109.4
C4—C5—C8120.4 (3)Br2—C8—H8A109.4
C5—C6—C1121.9 (3)C5—C8—H8B109.4
C2—C7—Br1111.0 (2)Br2—C8—H8B109.4
C5—C8—Br2111.4 (2)H8A—C8—H8B108.0
C16—C11—C12118.3 (3)C13—C12—H12119.7
C16—C11—C1119.7 (2)C11—C12—H12119.7
C12—C11—C1121.9 (2)C12—C13—H13119.7
C13—C12—C11120.6 (3)C14—C13—H13119.7
C12—C13—C14120.6 (3)C15—C14—H14120.4
C15—C14—C13119.3 (3)C13—C14—H14120.4
C14—C15—C16120.2 (3)C14—C15—H15119.9
C15—C16—C11120.9 (3)C16—C15—H15119.9
C4—C3—H3119.1C15—C16—H16119.5
C2—C3—H3119.1C11—C16—H16119.5
C6—C1—C2—C30.2 (4)C6—C5—C8—Br293.8 (3)
C11—C1—C2—C3−179.4 (3)C4—C5—C8—Br2−87.9 (3)
C6—C1—C2—C7175.8 (3)C2—C1—C11—C16128.0 (3)
C11—C1—C2—C7−3.8 (4)C6—C1—C11—C16−51.6 (4)
C1—C2—C3—C4−2.1 (4)C2—C1—C11—C12−53.6 (4)
C7—C2—C3—C4−177.8 (3)C6—C1—C11—C12126.8 (3)
C2—C3—C4—C51.9 (4)C16—C11—C12—C13−1.6 (4)
C3—C4—C5—C60.1 (4)C1—C11—C12—C13179.9 (3)
C3—C4—C5—C8−178.2 (3)C11—C12—C13—C14−1.0 (5)
C4—C5—C6—C1−1.9 (4)C12—C13—C14—C151.8 (5)
C8—C5—C6—C1176.3 (3)C13—C14—C15—C16−0.1 (5)
C2—C1—C6—C51.8 (4)C14—C15—C16—C11−2.5 (5)
C11—C1—C6—C5−178.6 (3)C12—C11—C16—C153.3 (4)
C3—C2—C7—Br1−77.2 (3)C1—C11—C16—C15−178.2 (3)
C1—C2—C7—Br1107.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···Br1i0.993.233.773 (3)116
C12—H12···Br1ii0.953.073.782 (3)133
C13—H13···Br1ii0.953.373.931 (3)120
C13—H13···Br1iii0.953.243.634 (3)107
C14—H14···Br1iv0.953.373.971 (3)123
C14—H14···Br1v0.953.434.326 (3)157
C4—H4···Br2vi0.953.374.260 (3)156
C4—H4···Br2vii0.953.263.845 (3)122
C6—H6···Br2viii0.953.204.124 (3)166
C8—H8B···Br2ix0.993.293.746 (3)110
C8—H8A···Br2ix0.993.433.746 (3)101
C15—H15···Br2x0.953.273.913 (3)127
C16—H16···Br2viii0.953.413.918 (3)116
C16—H16···Br2x0.953.243.898 (3)128

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) x, −y+2, z+1/2; (vi) −x, −y, −z; (vii) −x, −y+1, −z; (viii) −x, y, −z+1/2; (ix) x, y−1, z; (x) −x, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2951).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Czuchajowski, L. & Zemanek, A. (1990). Pol. J. Chem.64, 499–504.
  • Du Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562–4577.
  • Jones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947–o2948.
  • Jones, P. G. & Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725–731.
  • Jones, P. G., Zemanek, A. & Kuś, P. (2007). Acta Cryst. C63, o73–o76. [PubMed]
  • Obrey, S. J., Bott, S. G. & Barron, A. R. (2002). J. Chem. Crystallogr.32, 205–207.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography