PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m684.
Published online 2009 May 23. doi:  10.1107/S1600536809019187
PMCID: PMC2969667

Diaqua­bis(tetra­zolo[1,5-a]pyridine-8-carboxyl­ato-κ2 N 1,O)cobalt(II) dihydrate

Abstract

In the title compound, [Co(C6H3N4O2)2(H2O)2]·2H2O, the CoII atom is located on an inversion center in a slightly distorted octa­hedral environment formed by the O atoms of two water mol­ecules, and the N and O atoms of the chelating tetra­zolo[1,5-a]pyridine-8-carboxyl­ate anions. Hydrogen bonds of the O—H(...)O and O—H(...)N types result in a three-dimensional supra­molecular network.

Related literature

For background to coordination compounds and their synthesis by in situ reaction, see: Chen & Tong (2007 [triangle]); Liu et al. (2005 [triangle]); Li et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m684-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H3N4O2)2(H2O)2]·2H2O
  • M r = 457.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m684-efi2.jpg
  • a = 19.041 (4) Å
  • b = 11.694 (2) Å
  • c = 7.5371 (15) Å
  • V = 1678.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 K
  • 0.5 × 0.5 × 0.4 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.530, T max = 0.667
  • 13120 measured reflections
  • 1482 independent reflections
  • 1203 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.090
  • S = 1.21
  • 1482 reflections
  • 148 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019187/ng2582sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019187/ng2582Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

supplementary crystallographic information

Comment

Coordination complexes have attracted great attention in recent years. (Liu,et al., 2005). The in-situ reaction which can create new ligand and structure draw much more attention in synthesizing coordination complexes (Li,et al., 2007). Some interesting complexes were ganied by the in-situ reaction. (Chen,et al., 2007).

In the title compound, the cobalt atom the cobalt atom located in the inverse center is six coordinated by two waters and two tetrazolo(1,5-a)pyridine-8-carboxylato, (Fig. 1). Each tetrazolo(1,5-a)pyridine-8-carboxylato chelates to one cobalt atom. One type of water coordinates to the cobalt and the other acts as lattice water. A three dimensional supramolecular net formed by the hydrogen bonds of waters and tetrazolo(1,5-a)pyridine-8-carboxylato ligands intermolecular (Fig. 2).

Experimental

A mixture of cobalt(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on cobalt(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).Hydrogen atom of water were added by difference Fourier maps and refined with restrainated distance of O—H = 0.85Å with a error of 0.02Å, and the restrainated distance of H—H = 1.35Å with a error of 0.01Å of the same water.

Figures

Fig. 1.
A view of the title compound showing the coordination of Co atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: (a)-x+1/2,-y,z].
Fig. 2.
The 3D supramolecular net formed by the hydrogen bonds.

Crystal data

[Co(C6H3N4O2)2(H2O)2]·2H2ODx = 1.810 Mg m3
Mr = 457.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 11987 reflections
a = 19.041 (4) Åθ = 3.3–27.8°
b = 11.694 (2) ŵ = 1.09 mm1
c = 7.5371 (15) ÅT = 293 K
V = 1678.3 (6) Å3Block, red
Z = 40.5 × 0.5 × 0.4 mm
F(000) = 932

Data collection

Rigaku SCXmini diffractometer1482 independent reflections
Radiation source: fine-focus sealed tube1203 reflections with I > 2σ(I)
graphiteRint = 0.081
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −22→22
Tmin = 0.530, Tmax = 0.667k = −13→13
13120 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.21w = 1/[σ2(Fo2) + (0.0256P)2 + 2.1174P] where P = (Fo2 + 2Fc2)/3
1482 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.25000.00000.86713 (10)0.0185 (3)
O10.20211 (15)0.1011 (2)0.6721 (4)0.0258 (7)
O1W0.20777 (17)0.1069 (3)1.0644 (4)0.0282 (8)
H1WB0.187 (2)0.167 (2)1.037 (5)0.028 (14)*
H1WA0.234 (2)0.120 (4)1.151 (5)0.034 (16)*
O20.12294 (15)0.2126 (2)0.5359 (4)0.0310 (8)
N10.15291 (19)−0.0903 (3)0.8639 (4)0.0220 (8)
N20.1335 (2)−0.1860 (3)0.9493 (5)0.0307 (10)
N30.0650 (2)−0.2019 (3)0.9438 (5)0.0315 (10)
N40.03825 (19)−0.1111 (3)0.8530 (5)0.0236 (9)
C10.1390 (2)0.1307 (3)0.6326 (5)0.0220 (10)
C20.0793 (2)0.0595 (3)0.7064 (6)0.0199 (9)
C30.0093 (2)0.0832 (4)0.6782 (6)0.0251 (11)
H3A−0.00220.15000.61800.030*
C4−0.0468 (2)0.0108 (3)0.7364 (6)0.0276 (11)
H4A−0.09330.03180.71650.033*
C5−0.0318 (2)−0.0885 (4)0.8204 (6)0.0286 (11)
H5A−0.0670−0.13910.85470.034*
C60.0929 (2)−0.0430 (4)0.8022 (6)0.0209 (10)
O2W0.28936 (19)0.1261 (3)0.3682 (4)0.0363 (9)
H2WB0.259 (2)0.108 (4)0.444 (5)0.051 (19)*
H2WA0.312 (2)0.182 (3)0.408 (6)0.042 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0154 (5)0.0195 (5)0.0206 (5)0.0011 (3)0.0000.000
O10.0205 (17)0.0295 (17)0.0274 (18)−0.0008 (13)0.0002 (13)0.0101 (14)
O1W0.029 (2)0.0236 (18)0.032 (2)0.0111 (14)−0.0028 (15)−0.0049 (14)
O20.0291 (19)0.0258 (18)0.038 (2)−0.0023 (14)−0.0044 (15)0.0131 (15)
N10.023 (2)0.0189 (18)0.024 (2)0.0013 (15)−0.0020 (15)0.0079 (15)
N20.033 (2)0.023 (2)0.036 (2)−0.0045 (17)−0.0012 (18)0.0059 (18)
N30.033 (2)0.027 (2)0.035 (2)−0.0027 (17)0.0033 (18)0.0082 (18)
N40.023 (2)0.0206 (19)0.027 (2)−0.0040 (16)−0.0012 (16)0.0039 (16)
C10.028 (3)0.019 (2)0.019 (2)0.0023 (19)−0.0032 (19)−0.0003 (18)
C20.022 (2)0.018 (2)0.020 (2)−0.0037 (18)−0.0049 (18)0.0002 (18)
C30.028 (3)0.023 (2)0.024 (3)0.0014 (19)−0.0023 (19)−0.0004 (19)
C40.019 (2)0.034 (3)0.029 (3)0.0030 (19)−0.0016 (19)−0.003 (2)
C50.022 (3)0.031 (3)0.033 (3)−0.008 (2)0.002 (2)−0.003 (2)
C60.019 (2)0.022 (2)0.021 (2)−0.0030 (18)−0.0032 (18)0.0008 (19)
O2W0.035 (2)0.042 (2)0.031 (2)−0.0088 (17)0.0054 (16)−0.0055 (16)

Geometric parameters (Å, °)

Co1—O12.095 (3)N3—N41.362 (5)
Co1—O1i2.095 (3)N4—C61.365 (5)
Co1—O1W2.102 (3)N4—C51.382 (6)
Co1—O1Wi2.102 (3)C1—C21.516 (6)
Co1—N12.129 (4)C2—C31.378 (6)
Co1—N1i2.129 (4)C2—C61.424 (6)
O1—C11.286 (5)C3—C41.432 (6)
O1W—H1WB0.825 (18)C3—H3A0.9300
O1W—H1WA0.842 (19)C4—C51.353 (6)
O2—C11.242 (5)C4—H4A0.9300
N1—N21.342 (5)C5—H5A0.9300
N1—C61.351 (5)O2W—H2WB0.835 (19)
N2—N31.318 (5)O2W—H2WA0.842 (19)
O1—Co1—O1i90.89 (16)N2—N3—N4106.0 (3)
O1—Co1—O1W89.66 (13)N3—N4—C6108.1 (4)
O1i—Co1—O1W176.49 (12)N3—N4—C5126.8 (4)
O1—Co1—O1Wi176.49 (12)C6—N4—C5125.1 (4)
O1i—Co1—O1Wi89.66 (13)O2—C1—O1125.0 (4)
O1W—Co1—O1Wi89.99 (18)O2—C1—C2117.0 (4)
O1—Co1—N183.91 (12)O1—C1—C2117.9 (4)
O1i—Co1—N195.17 (12)C3—C2—C6115.1 (4)
O1W—Co1—N188.33 (13)C3—C2—C1124.0 (4)
O1Wi—Co1—N192.58 (13)C6—C2—C1120.8 (4)
O1—Co1—N1i95.17 (12)C2—C3—C4123.8 (4)
O1i—Co1—N1i83.91 (12)C2—C3—H3A118.1
O1W—Co1—N1i92.58 (13)C4—C3—H3A118.1
O1Wi—Co1—N1i88.33 (13)C5—C4—C3119.6 (4)
N1—Co1—N1i178.70 (19)C5—C4—H4A120.2
C1—O1—Co1136.2 (3)C3—C4—H4A120.2
Co1—O1W—H1WB120 (3)C4—C5—N4116.8 (4)
Co1—O1W—H1WA115 (3)C4—C5—H5A121.6
H1WB—O1W—H1WA109 (2)N4—C5—H5A121.6
N2—N1—C6105.8 (3)N1—C6—N4108.0 (4)
N2—N1—Co1130.3 (3)N1—C6—C2132.4 (4)
C6—N1—Co1122.3 (3)N4—C6—C2119.6 (4)
N3—N2—N1112.1 (3)H2WB—O2W—H2WA107 (3)
O1i—Co1—O1—C1123.8 (4)O2—C1—C2—C3−2.7 (6)
O1W—Co1—O1—C1−59.7 (4)O1—C1—C2—C3178.3 (4)
O1Wi—Co1—O1—C125 (2)O2—C1—C2—C6173.1 (4)
N1—Co1—O1—C128.7 (4)O1—C1—C2—C6−5.9 (6)
N1i—Co1—O1—C1−152.2 (4)C6—C2—C3—C4−1.1 (6)
O1—Co1—N1—N2174.9 (4)C1—C2—C3—C4174.9 (4)
O1i—Co1—N1—N284.5 (4)C2—C3—C4—C5−1.7 (7)
O1W—Co1—N1—N2−95.3 (4)C3—C4—C5—N43.2 (6)
O1Wi—Co1—N1—N2−5.3 (4)N3—N4—C5—C4176.0 (4)
N1i—Co1—N1—N2129.7 (4)C6—N4—C5—C4−2.1 (7)
O1—Co1—N1—C6−21.2 (3)N2—N1—C6—N40.4 (5)
O1i—Co1—N1—C6−111.5 (3)Co1—N1—C6—N4−166.9 (3)
O1W—Co1—N1—C668.6 (3)N2—N1—C6—C2178.1 (5)
O1Wi—Co1—N1—C6158.6 (3)Co1—N1—C6—C210.8 (7)
N1i—Co1—N1—C6−66.4 (3)N3—N4—C6—N1−1.1 (5)
C6—N1—N2—N30.4 (5)C5—N4—C6—N1177.4 (4)
Co1—N1—N2—N3166.3 (3)N3—N4—C6—C2−179.1 (4)
N1—N2—N3—N4−1.1 (5)C5—N4—C6—C2−0.7 (6)
N2—N3—N4—C61.3 (4)C3—C2—C6—N1−175.3 (4)
N2—N3—N4—C5−177.1 (4)C1—C2—C6—N18.6 (7)
Co1—O1—C1—O2162.2 (3)C3—C2—C6—N42.2 (6)
Co1—O1—C1—C2−18.9 (6)C1—C2—C6—N4−173.9 (4)

Symmetry codes: (i) −x+1/2, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2ii0.83 (2)1.95 (2)2.763 (4)168 (4)
O1W—H1WA···O2Wiii0.84 (2)1.94 (2)2.776 (5)170 (5)
O2W—H2WB···O10.84 (2)2.04 (3)2.845 (4)163 (4)
O2W—H2WA···N2iv0.84 (2)2.15 (2)2.981 (5)171 (4)

Symmetry codes: (ii) x, −y+1/2, −z+3/2; (iii) x, y, z+1; (iv) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2582).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res.40, 162–170. [PubMed]
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529. [PubMed]
  • Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem.44, 7298–7300. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography