PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m685–m686.
Published online 2009 May 29. doi:  10.1107/S1600536809019138
PMCID: PMC2969665

catena-Poly[[(nitrato-κ2 O,O′)silver(I)]-μ3-4-pyridone-κ3 O:O:O]

Abstract

In the title complex, [Ag(NO3)(C5H5NO)]n, the AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion, displaying a nearly planar coordination geometry. The O atoms of two 4-pyridone ligands bridge two symmetrically related AgNO3 units, forming a dimer, with an Ag(...)Ag separation of 3.680 (2) Å. Neighbouring dimers are linked into an infinite chain through weak Ag(...)O inter­actions [2.765 (2) Å], Ag(...)Ag inter­actions [3.1511 (4) Å] and π–π stacking inter­actions [centroid–centroid distance = 3.623 (4) Å]. N—H(...)O and C—H(...)O hydrogen bonds assemble these chains into a three-dimensional network.

Related literature

For general background to hydroxy­pyridines, see: Deng et al. (2005 [triangle]); Holis & Lippard (1983 [triangle]); John & Urland (2006 [triangle]); Klausmeyer & Beckles (2007 [triangle]). For related structures, see: Deisenhofer & Michel (1998 [triangle]); Gao et al. (2004 [triangle]); Leng & Ng (2007 [triangle]); Li, Yan et al. (2005 [triangle]); Li, Yin et al. (2005 [triangle]); Pan & Xu (2004 [triangle]); Wu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m685-scheme1.jpg

Experimental

Crystal data

  • [Ag(NO3)(C5H5NO)]
  • M r = 264.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m685-efi1.jpg
  • a = 19.3509 (7) Å
  • b = 3.6232 (1) Å
  • c = 21.2600 (8) Å
  • β = 102.174 (2)°
  • V = 1457.06 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.74 mm−1
  • T = 296 K
  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.508, T max = 0.575
  • 11458 measured reflections
  • 1678 independent reflections
  • 1557 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.054
  • S = 1.07
  • 1678 reflections
  • 112 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019138/hy2199sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019138/hy2199Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Guangdong Natural Science Foundation (SN. 8452606101000739) for supporting this work.

supplementary crystallographic information

Comment

Hydroxypyridines (PyOH), such as 2-, 3- and 4-PyOH, have attracted great attention in the field of crystal engineering as good candidates for the construction of supramolecular systems because they are bifunctional ligands that are not only capable of coordinating to metal ions but can also form classical hydrogen bonds as both donors and acceptors (Holis & Lippard, 1983; Klausmeyer & Beckles, 2007). 4-PyOH has two tautomers, dominated by the presence of keto form in polar solvents (Deng et al., 2005; John & Urland, 2006). Thus, the protonated N atom can act as hydrogen bond donor and the PyOH uses O atom to coordinate to metal. However, the coordination chemistry of 4-PyOH ligand is still underveloped and only a few complexes have been structurally characterized in recent years (Gao et al., 2004; Leng & Ng, 2007; Li, Yan et al., 2005). In order to gain further insight into the metal-binding modes of the 4-PyOH ligand, we introduced AgI ion into the coordination system of the 4-PyOH ligand. In the present paper, the AgI ion only coordinates via the unfavoured O atom of 4-pyridone ligand, producing the title one-dimensional coordination polymer, which exhibits a three-dimensional hydrogen-bonded architecture.

The coordination environment of AgI centre is shown in Fig. 1. Each AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion (Table 1), displaying a nearly planar coordination geometry. Two 1H-pyridin-4-one ligands use their O atoms to bridge two symmetrically related AgNO3 units to form a dimer, with an Ag···Ag separation of 3.680 (2)Å. The adjacent dimers are linked through weak Ag···Ag interactions [3.1511 (4)Å] into a one-dimensional polymeric chain, which is also stabilized by weak Ag···O interactions [2.765 (2)Å] and intrachain π–π interactions (Fig. 2). The centroid–centroid and interplanar distances between adjacent pyridyl rings are 3.623 (4) and 3.301 (4)Å, respectively, thus indicating a weak π–π contact (Deisenhofer & Michel, 1998; Li, Yin et al., 2005; Pan & Xu, 2004; Wu et al., 2003). The polymeric chain shows a staircase-like array, with an Ag···Ag···Ag angle of 63.51 (4)° between three successive Ag atoms along the chain. Such an array in the chain may be explained to avoid steric hindrance. N—H···O hydrogen bonds between the ligand N atoms and the nitrate O atoms (Table 2) link adjacent chains to furnish a lamellar layer. The interlayer N—H···O and C—H···O hydrogen bonds (Table 2) further assemble the neighbouring layers, giving rise to a three-dimensional supramolecular network (Fig. 3).

Experimental

A mixture of silver nitrate (0.17 g, 1 mmol), 4-hydroxypyridine (0.095 g, 1 mmol), NaOH (0.02 g, 0.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air (yield 0.18 g, 69.2%).

Refinement

C-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). H atom on N atom was located on difference Fourier map and refined with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The asymmetric unit of the title compound. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, 1-y, 1-z.]
Fig. 2.
View of one-dimensional infinite chain. Dashed lines denote Ag···Ag and π–π interactions.
Fig. 3.
A packing view of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ag(NO3)(C5H5NO)]F(000) = 1024
Mr = 264.98Dx = 2.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3600 reflections
a = 19.3509 (7) Åθ = 1.4–28°
b = 3.6232 (1) ŵ = 2.74 mm1
c = 21.2600 (8) ÅT = 296 K
β = 102.174 (2)°Block, colorless
V = 1457.06 (9) Å30.26 × 0.23 × 0.21 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer1678 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −24→24
Tmin = 0.508, Tmax = 0.575k = −4→4
11458 measured reflectionsl = −26→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0276P)2 + 1.8757P] where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = −0.52 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag1−0.054927 (10)0.18113 (6)0.443081 (9)0.04893 (9)
C10.08175 (11)0.6362 (6)0.41324 (10)0.0342 (4)
C20.15034 (12)0.7888 (6)0.43328 (12)0.0411 (5)
H20.16610.86200.47580.049*
C30.19321 (13)0.8286 (7)0.39055 (14)0.0471 (6)
H30.23800.93060.40400.057*
C40.10736 (14)0.5710 (7)0.30792 (11)0.0469 (5)
H40.09390.49670.26520.056*
C50.06220 (12)0.5262 (7)0.34795 (10)0.0394 (4)
H50.01790.42220.33250.047*
H10.1981 (15)0.767 (8)0.3009 (12)0.059*
N10.17149 (12)0.7221 (6)0.32924 (11)0.0486 (5)
N2−0.15451 (10)−0.1759 (5)0.34244 (9)0.0362 (4)
O10.03930 (9)0.6001 (5)0.45201 (7)0.0445 (4)
O2−0.15517 (10)−0.2094 (6)0.40146 (8)0.0543 (5)
O3−0.10437 (9)−0.0108 (6)0.32724 (9)0.0542 (4)
O4−0.20310 (8)−0.3092 (5)0.30118 (8)0.0480 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.04508 (12)0.05614 (14)0.04269 (12)−0.01218 (8)0.00275 (8)−0.01404 (8)
C10.0356 (10)0.0325 (10)0.0360 (10)−0.0024 (8)0.0111 (8)−0.0017 (8)
C20.0382 (11)0.0412 (11)0.0439 (12)−0.0048 (9)0.0085 (9)−0.0019 (9)
C30.0353 (11)0.0423 (13)0.0658 (16)−0.0008 (9)0.0156 (11)0.0055 (11)
C40.0583 (14)0.0479 (13)0.0378 (11)0.0046 (11)0.0173 (10)0.0005 (10)
C50.0424 (11)0.0417 (12)0.0351 (10)−0.0032 (9)0.0101 (8)−0.0029 (9)
N10.0523 (12)0.0485 (11)0.0532 (12)0.0062 (9)0.0299 (10)0.0065 (9)
N20.0312 (8)0.0395 (10)0.0358 (9)0.0001 (7)0.0022 (7)−0.0047 (7)
O10.0443 (8)0.0547 (10)0.0382 (8)−0.0146 (7)0.0175 (7)−0.0098 (7)
O20.0548 (10)0.0734 (12)0.0336 (8)−0.0131 (9)0.0069 (8)−0.0082 (8)
O30.0461 (9)0.0610 (12)0.0567 (10)−0.0179 (9)0.0132 (8)−0.0042 (9)
O40.0377 (9)0.0678 (11)0.0360 (9)−0.0126 (8)0.0022 (7)−0.0091 (8)

Geometric parameters (Å, °)

Ag1—O1i2.3259 (15)C3—N11.339 (4)
Ag1—O12.3493 (16)C3—H30.9300
Ag1—O1ii2.7652 (18)C4—N11.344 (4)
Ag1—O22.4132 (19)C4—C51.352 (3)
Ag1—O32.5437 (18)C4—H40.9300
Ag1—Ag1iii3.1511 (4)C5—H50.9300
C1—O11.287 (2)N1—H10.89 (3)
C1—C51.417 (3)N2—O31.239 (2)
C1—C21.418 (3)N2—O41.240 (2)
C2—C31.361 (3)N2—O21.263 (3)
C2—H20.9300O1—Ag1i2.3259 (15)
O1i—Ag1—O176.15 (6)C2—C3—H3119.7
O1i—Ag1—O2118.90 (6)N1—C4—C5120.7 (2)
O1—Ag1—O2163.46 (6)N1—C4—H4119.7
O1i—Ag1—O3165.44 (6)C5—C4—H4119.7
O1—Ag1—O3112.45 (5)C4—C5—C1120.6 (2)
O2—Ag1—O351.36 (5)C4—C5—H5119.7
O1i—Ag1—Ag1iii58.35 (5)C1—C5—H5119.7
O1—Ag1—Ag1iii79.67 (4)C3—N1—C4121.6 (2)
O2—Ag1—Ag1iii113.41 (5)C3—N1—H1120 (2)
O3—Ag1—Ag1iii133.22 (5)C4—N1—H1118 (2)
O1—C1—C5121.62 (19)O3—N2—O4121.46 (19)
O1—C1—C2122.0 (2)O3—N2—O2118.54 (19)
C5—C1—C2116.34 (19)O4—N2—O2120.00 (19)
C3—C2—C1120.3 (2)C1—O1—Ag1i127.44 (14)
C3—C2—H2119.9C1—O1—Ag1127.10 (13)
C1—C2—H2119.9Ag1i—O1—Ag1103.85 (6)
N1—C3—C2120.6 (2)N2—O2—Ag197.60 (13)
N1—C3—H3119.7N2—O3—Ag191.99 (13)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O2iv0.932.463.343 (3)160
N1—H1···O4v0.89 (3)2.21 (2)2.965 (3)143 (3)
N1—H1···O4iv0.89 (3)2.45 (2)3.121 (3)133 (3)

Symmetry codes: (iv) x+1/2, y+3/2, z; (v) −x, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2199).

References

  • Bruker (2007). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deisenhofer, J. & Michel, H. (1998). EMBO J.8, 2149–2170. [PubMed]
  • Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2523–m2525.
  • Gao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651–m653. [PubMed]
  • Holis, L. S. & Lippard, S. J. (1983). Inorg. Chem.22, 2708–2713.
  • John, D. & Urland, W. (2006). Eur. J. Inorg. Chem. pp. 3503–3509.
  • Klausmeyer, K. K. & Beckles, F. R. (2007). Inorg. Chim. Acta, 360, 3241–3249.
  • Leng, X. B. & Ng, D. K. P. (2007). Eur. J. Inorg. Chem. pp. 4615–4620.
  • Li, G. M., Yan, P. F., Sato, O. & Einaga, Y. (2005). J. Solid State Chem.178, 36–40.
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography