PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1356.
Published online 2009 May 20. doi:  10.1107/S1600536809017565
PMCID: PMC2969662

2,4-Bis(4-bromo­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

The title compound, C20H19Br2NO, shows a chair–chair conformation for the aza­bicycle with an equatorial disposition of the 4-bromo­phenyl groups [dihedral angle between the aromatic rings = 16.48 (3)°]. In the crystal, a short Br(...)Br contact [3.520 (4) Å] occurs and the structure is further stabilized by N—H(...)O hydrogen bonds and C—H(...)O inter­actions.

Related literature

For general background to the biological properties of 3-aza­bicyclo­nona­nes, see: Jeyaraman & Avila (1981 [triangle]); Hardick et al. (1996 [triangle]); Barker et al. (2005 [triangle]). For different conformations for the aza­bicycle, see: Parthiban et al. (2008a [triangle],b [triangle],c [triangle],d [triangle], 2009 [triangle]); Smith-Verdier et al. (1983 [triangle]); Padegimas & Kovacic (1972 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1356-scheme1.jpg

Experimental

Crystal data

  • C20H19Br2NO
  • M r = 449.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1356-efi1.jpg
  • a = 6.9415 (3) Å
  • b = 10.4489 (4) Å
  • c = 13.2888 (5) Å
  • α = 101.542 (2)°
  • β = 100.391 (2)°
  • γ = 94.472 (2)°
  • V = 922.34 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.40 mm−1
  • T = 298 K
  • 0.38 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 1999 [triangle]) T min = 0.280, T max = 0.415
  • 12376 measured reflections
  • 4036 independent reflections
  • 2805 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.089
  • S = 1.02
  • 4036 reflections
  • 221 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.92 e Å−3

Data collection: SMART (Bruker–Nonius, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker–Nonius, 2004 [triangle]); data reduction: SAINT-Plus (Bruker–Nonius, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017565/hb2967sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017565/hb2967Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

3-Azabicyclononanes are important class of heterocycles due to their broad spectrum of biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008a,b,c,d, 2009), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound, (I).

The analysis of torsion angles, asymmetry parameters and least-squares plane calculation of the title compound shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by 0.636 (3) and -0.730 (3) Å. respectively; the q2 and q3 are 0.057 (3)Å and -0.610 (3) Å. The total puckering amplitude, QT = 0.613 (3)Å and θ = 174.5 (3)°. (Cremer & Pople, 1975).

The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C8 and C4 from the C2/C3/C5/C6 plane by -0.693 (4)Å and 0.547 (3) Å, respectively. Total puckering amplitude, QT = 0.546 (3) Å, q2 = 0.109 (4) Å, q3 = -0.535 (4)Å and θ =168.6 (4)° (Cremer & Pople, 1975).

Hence, the title compound C20 H19 Br2 N O, exists in twin-chair conformation with equatorial orientation of 4-bromophenyl groups on the heterocycle and are orientated at an angle of 16.48 (3)° to each other. the torsion angle of C8—C2—C1—C9 and C8—C6—C7—C15 are -177.26 (3) and -178.37 (4) °, respectively.

An interesting feature of the crystal structure is a weak intermolecular Br···Br [3.520 (4) Å; symmetry code: 1 - x, 1 - y, - z] interaction which is shorter than the sum of the van der Waals radius of Br atoms. The crystal structure is further stabilized by N—H···O interaction and C—H···O interaction, where the oxygen atom bonds with both C18 and N1 forming a bifurcated bond (Table 1).

Experimental

To a warm solution of 0.075 mol ammonium acetate in 50 ml absolute ethanol, 0.1 mol of para-bromobenzaldehyde and 0.05 mol of cyclohexanone were added. The mixture was gently warmed on a hot plate with stirring till the yellow color formed during the mixing of the reactants and stirring is continued over night at room temparature. At the end, the white crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture. Colourless blocks of (I) were recrystallised from ethanol.

Refinement

The N-bound H atom was located in a difference map and refined isotropically. Other hydrogen atoms were geometrically placed (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular sturcture of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.
Fig. 2.
N—H···O interaction and Br—Br interactions (dashed lines) in the crystal of (I).

Crystal data

C20H19Br2NOZ = 2
Mr = 449.18F(000) = 448
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9415 (3) ÅCell parameters from 4458 reflections
b = 10.4489 (4) Åθ = 2.3–23.7°
c = 13.2888 (5) ŵ = 4.40 mm1
α = 101.542 (2)°T = 298 K
β = 100.391 (2)°Block, colourless
γ = 94.472 (2)°0.38 × 0.25 × 0.20 mm
V = 922.34 (6) Å3

Data collection

Bruker SMART CCD diffractometer4036 independent reflections
Radiation source: fine-focus sealed tube2805 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker 1999)h = −9→9
Tmin = 0.280, Tmax = 0.415k = −13→10
12376 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0266P)2 + 1.1237P] where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −0.92 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.51212 (7)−0.32865 (4)0.04459 (3)0.07124 (16)
Br20.76344 (6)0.92093 (4)0.40986 (3)0.06669 (15)
C10.2024 (4)0.1542 (3)0.2864 (2)0.0314 (6)
H10.19880.14110.35710.038*
C2−0.0130 (4)0.1605 (3)0.2300 (2)0.0354 (7)
H2−0.09430.07920.22910.043*
C3−0.0360 (5)0.1813 (3)0.1177 (2)0.0469 (8)
H3A0.02420.11360.07710.056*
H3B−0.17540.17060.08640.056*
C40.0554 (5)0.3150 (4)0.1097 (3)0.0539 (9)
H4A0.19740.31580.11990.065*
H4B0.00800.32870.03990.065*
C50.0073 (5)0.4269 (3)0.1896 (3)0.0492 (8)
H5A−0.12790.44270.16690.059*
H5B0.09210.50610.19150.059*
C60.0320 (4)0.4019 (3)0.3006 (2)0.0381 (7)
H6−0.02040.47220.34460.046*
C70.2472 (4)0.3925 (3)0.3542 (2)0.0328 (6)
H70.24490.37820.42470.039*
C8−0.0841 (4)0.2732 (3)0.2963 (2)0.0359 (7)
C90.2870 (4)0.0391 (3)0.2290 (2)0.0317 (6)
C100.4256 (4)0.0528 (3)0.1678 (2)0.0365 (7)
H100.47210.13630.16180.044*
C110.4958 (4)−0.0566 (3)0.1153 (2)0.0405 (7)
H110.5920−0.04640.07610.049*
C120.4230 (5)−0.1791 (3)0.1214 (2)0.0410 (7)
C130.2850 (5)−0.1960 (3)0.1810 (3)0.0509 (9)
H130.2359−0.28000.18460.061*
C140.2202 (5)−0.0867 (3)0.2355 (3)0.0458 (8)
H140.1295−0.09780.27760.055*
C150.3781 (4)0.5192 (3)0.3658 (2)0.0324 (6)
C160.3485 (4)0.6307 (3)0.4353 (2)0.0385 (7)
H160.25010.62480.47390.046*
C170.4611 (4)0.7499 (3)0.4489 (2)0.0427 (7)
H170.43790.82380.49510.051*
C180.6087 (4)0.7574 (3)0.3925 (2)0.0402 (7)
C190.6428 (4)0.6494 (3)0.3236 (3)0.0438 (8)
H190.74290.65550.28620.053*
C200.5260 (4)0.5304 (3)0.3101 (2)0.0395 (7)
H200.54800.45720.26280.047*
N10.3217 (3)0.2793 (2)0.2964 (2)0.0328 (5)
O1−0.2151 (3)0.2611 (2)0.34451 (19)0.0541 (6)
H1A0.434 (5)0.275 (3)0.322 (2)0.039 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1029 (3)0.0451 (3)0.0682 (3)0.0312 (2)0.0296 (2)−0.0015 (2)
Br20.0736 (3)0.0415 (2)0.0772 (3)−0.01884 (18)0.0181 (2)0.0021 (2)
C10.0309 (13)0.0280 (16)0.0342 (15)0.0023 (11)0.0088 (11)0.0031 (13)
C20.0268 (13)0.0318 (17)0.0449 (17)−0.0002 (11)0.0073 (12)0.0034 (14)
C30.0399 (17)0.053 (2)0.0409 (17)0.0099 (15)0.0012 (14)−0.0005 (16)
C40.0465 (18)0.075 (3)0.0428 (18)0.0069 (17)0.0072 (15)0.0215 (19)
C50.0419 (17)0.042 (2)0.061 (2)0.0033 (14)−0.0021 (15)0.0169 (18)
C60.0304 (14)0.0334 (18)0.0474 (17)0.0084 (12)0.0075 (13)−0.0002 (14)
C70.0303 (14)0.0303 (17)0.0354 (15)0.0046 (11)0.0072 (12)0.0004 (13)
C80.0250 (13)0.0402 (19)0.0393 (16)0.0052 (12)0.0051 (12)0.0018 (14)
C90.0292 (13)0.0279 (17)0.0355 (15)0.0033 (11)0.0039 (11)0.0035 (13)
C100.0367 (15)0.0267 (17)0.0438 (17)−0.0008 (12)0.0095 (13)0.0032 (14)
C110.0420 (16)0.039 (2)0.0412 (17)0.0065 (14)0.0151 (13)0.0026 (15)
C120.0487 (17)0.0314 (19)0.0393 (16)0.0148 (14)0.0050 (14)−0.0009 (14)
C130.061 (2)0.0243 (19)0.069 (2)0.0026 (15)0.0199 (18)0.0094 (17)
C140.0490 (18)0.035 (2)0.060 (2)0.0049 (14)0.0265 (16)0.0117 (16)
C150.0301 (14)0.0289 (17)0.0346 (15)0.0053 (11)0.0031 (12)0.0013 (13)
C160.0368 (15)0.0357 (19)0.0388 (16)0.0010 (13)0.0090 (13)−0.0019 (14)
C170.0474 (17)0.0328 (19)0.0413 (17)0.0047 (14)0.0062 (14)−0.0048 (14)
C180.0405 (16)0.0307 (18)0.0441 (17)−0.0013 (13)−0.0001 (13)0.0062 (15)
C190.0384 (16)0.041 (2)0.0535 (19)0.0016 (14)0.0173 (14)0.0080 (16)
C200.0381 (15)0.0325 (18)0.0466 (17)0.0059 (13)0.0133 (13)0.0005 (14)
N10.0245 (12)0.0277 (15)0.0420 (14)0.0035 (10)0.0055 (10)−0.0013 (11)
O10.0373 (12)0.0599 (16)0.0651 (15)0.0028 (10)0.0245 (11)0.0019 (13)

Geometric parameters (Å, °)

Br1—C121.899 (3)C7—H70.9800
Br2—C181.896 (3)C8—O11.216 (3)
C1—N11.461 (4)C9—C101.384 (4)
C1—C91.510 (4)C9—C141.384 (4)
C1—C21.560 (4)C10—C111.386 (4)
C1—H10.9800C10—H100.9300
C2—C81.497 (4)C11—C121.362 (4)
C2—C31.532 (4)C11—H110.9300
C2—H20.9800C12—C131.372 (5)
C3—C41.519 (5)C13—C141.377 (5)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—H140.9300
C4—C51.516 (5)C15—C201.381 (4)
C4—H4A0.9700C15—C161.388 (4)
C4—H4B0.9700C16—C171.379 (4)
C5—C61.531 (5)C16—H160.9300
C5—H5A0.9700C17—C181.380 (4)
C5—H5B0.9700C17—H170.9300
C6—C81.498 (4)C18—C191.369 (4)
C6—C71.554 (4)C19—C201.392 (4)
C6—H60.9800C19—H190.9300
C7—N11.461 (4)C20—H200.9300
C7—C151.511 (4)N1—H1A0.80 (3)
N1—C1—C9112.3 (2)O1—C8—C2123.9 (3)
N1—C1—C2109.5 (2)O1—C8—C6124.0 (3)
C9—C1—C2110.5 (2)C2—C8—C6112.0 (2)
N1—C1—H1108.1C10—C9—C14118.0 (3)
C9—C1—H1108.1C10—C9—C1123.1 (3)
C2—C1—H1108.1C14—C9—C1118.8 (3)
C8—C2—C3109.2 (3)C9—C10—C11120.7 (3)
C8—C2—C1105.7 (2)C9—C10—H10119.7
C3—C2—C1115.4 (2)C11—C10—H10119.7
C8—C2—H2108.8C12—C11—C10119.6 (3)
C3—C2—H2108.8C12—C11—H11120.2
C1—C2—H2108.8C10—C11—H11120.2
C4—C3—C2114.2 (3)C11—C12—C13121.0 (3)
C4—C3—H3A108.7C11—C12—Br1119.4 (2)
C2—C3—H3A108.7C13—C12—Br1119.6 (2)
C4—C3—H3B108.7C12—C13—C14119.0 (3)
C2—C3—H3B108.7C12—C13—H13120.5
H3A—C3—H3B107.6C14—C13—H13120.5
C5—C4—C3112.7 (3)C13—C14—C9121.5 (3)
C5—C4—H4A109.1C13—C14—H14119.2
C3—C4—H4A109.1C9—C14—H14119.2
C5—C4—H4B109.1C20—C15—C16117.9 (3)
C3—C4—H4B109.1C20—C15—C7123.3 (3)
H4A—C4—H4B107.8C16—C15—C7118.8 (2)
C4—C5—C6114.0 (3)C17—C16—C15121.8 (3)
C4—C5—H5A108.7C17—C16—H16119.1
C6—C5—H5A108.7C15—C16—H16119.1
C4—C5—H5B108.7C16—C17—C18118.8 (3)
C6—C5—H5B108.7C16—C17—H17120.6
H5A—C5—H5B107.6C18—C17—H17120.6
C8—C6—C5108.9 (3)C19—C18—C17121.1 (3)
C8—C6—C7106.3 (2)C19—C18—Br2119.8 (2)
C5—C6—C7115.2 (2)C17—C18—Br2119.1 (2)
C8—C6—H6108.8C18—C19—C20119.3 (3)
C5—C6—H6108.8C18—C19—H19120.4
C7—C6—H6108.8C20—C19—H19120.4
N1—C7—C15112.1 (2)C15—C20—C19121.1 (3)
N1—C7—C6110.0 (2)C15—C20—H20119.4
C15—C7—C6111.1 (2)C19—C20—H20119.4
N1—C7—H7107.8C1—N1—C7113.8 (2)
C15—C7—H7107.8C1—N1—H1A110 (2)
C6—C7—H7107.8C7—N1—H1A111 (2)
N1—C1—C2—C8−58.5 (3)C1—C9—C10—C11−178.8 (3)
C9—C1—C2—C8177.2 (2)C9—C10—C11—C122.1 (5)
N1—C1—C2—C362.2 (3)C10—C11—C12—C13−1.8 (5)
C9—C1—C2—C3−62.1 (3)C10—C11—C12—Br1177.4 (2)
C8—C2—C3—C451.9 (3)C11—C12—C13—C14−0.1 (5)
C1—C2—C3—C4−66.9 (4)Br1—C12—C13—C14−179.4 (3)
C2—C3—C4—C5−45.1 (4)C12—C13—C14—C91.8 (5)
C3—C4—C5—C645.8 (4)C10—C9—C14—C13−1.5 (5)
C4—C5—C6—C8−53.2 (3)C1—C9—C14—C13176.9 (3)
C4—C5—C6—C766.0 (4)N1—C7—C15—C2012.5 (4)
C8—C6—C7—N156.8 (3)C6—C7—C15—C20−111.0 (3)
C5—C6—C7—N1−63.8 (3)N1—C7—C15—C16−167.8 (3)
C8—C6—C7—C15−178.4 (2)C6—C7—C15—C1668.6 (3)
C5—C6—C7—C1561.0 (3)C20—C15—C16—C170.4 (4)
C3—C2—C8—O1122.1 (3)C7—C15—C16—C17−179.2 (3)
C1—C2—C8—O1−113.2 (3)C15—C16—C17—C18−0.9 (5)
C3—C2—C8—C6−60.8 (3)C16—C17—C18—C190.6 (5)
C1—C2—C8—C663.9 (3)C16—C17—C18—Br2179.6 (2)
C5—C6—C8—O1−121.4 (3)C17—C18—C19—C200.1 (5)
C7—C6—C8—O1113.9 (3)Br2—C18—C19—C20−178.9 (2)
C5—C6—C8—C261.4 (3)C16—C15—C20—C190.4 (4)
C7—C6—C8—C2−63.2 (3)C7—C15—C20—C19180.0 (3)
N1—C1—C9—C10−17.2 (4)C18—C19—C20—C15−0.6 (5)
C2—C1—C9—C10105.4 (3)C9—C1—N1—C7−178.3 (2)
N1—C1—C9—C14164.3 (3)C2—C1—N1—C758.5 (3)
C2—C1—C9—C14−73.0 (3)C15—C7—N1—C1178.2 (2)
C14—C9—C10—C11−0.4 (4)C6—C7—N1—C1−57.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (3)2.42 (3)3.191 (3)162 (3)
C16—H16···O1ii0.932.533.242 (3)133

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2967).

References

  • Barker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. [PubMed]
  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker–Nonius (2004). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem.39, 4860–4866. [PubMed]
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem.37, 2672–2676.
  • Parthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o609. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography