PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1279.
Published online 2009 May 14. doi:  10.1107/S1600536809017292
PMCID: PMC2969660

2,2′-Dimethoxy-4,4′-[rel-(2R,3S)-2,3-di­methylbutane-1,4-diyl]diphenol

Abstract

The title mol­ecule, C20H26O4, commonly known as meso-dihydro­guaiaretic acid, is a naturally occurring lignan extracted from Larrea tridentata and other plants. The mol­ecule has a noncrystallographic inversion center situated at the midpoint of the central C—C bond, generating the meso stereoisomer. The central C—C—C—C alkyl chain displays an all-trans conformation, allowing an almost parallel arrangement of the benzene rings, which make a dihedral angle of 5.0 (3)°. Both hydr­oxy groups form weak O—H(...)O—H chains of hydrogen bonds along [100]. The resulting supra­molecular structure is an undulating plane parallel to (010).

Related literature

For the extraction of the title mol­ecule from Larrea tridentata, see: Waller & Gisvold (1945 [triangle]). For previous phytochemical characterizations, see: Gnabre et al. (1995 [triangle]); Konno et al. (1990 [triangle]); Tyler & Foster (1999 [triangle]). For the activity of this plant against Mycobacterium tuberculosis, see: Camacho-Corona et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1279-scheme1.jpg

Experimental

Crystal data

  • C20H26O4
  • M r = 330.41
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1279-efi1.jpg
  • a = 5.1355 (8) Å
  • b = 12.024 (2) Å
  • c = 30.158 (5) Å
  • V = 1862.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.50 × 0.40 × 0.18 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 3966 measured reflections
  • 1937 independent reflections
  • 1196 reflections with I > 2σ(I)
  • R int = 0.159
  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.139
  • S = 1.00
  • 1937 reflections
  • 227 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017292/is2391sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017292/is2391Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Veronica Rivas Galindo for running the NMR spectra of lignan. We also acknowledge PAICyT for financial support (grant No. SA1417-06).

supplementary crystallographic information

Comment

Larrea tridentata, also known as gobernadora, hediondilla, greasewood, chaparral or creosote bush, is a shrubby plant belonging to the family of Zygophyllaceae, which grows in some areas of the desert southwest in the United States of America and Northern Mexico. Tuberculosis, cancer, menstrual pains, and diabetes treatment are among the indications listed for chaparral (Tyler & Foster, 1999). For instance, L. tridentata has been shown to be active against Mycobacterium tuberculosis, with a minimum inhibitory concentration of 200 µg/ml (Camacho-Corona et al., 2008). We are currently working on the full characterization of the main active compounds found in the chloroform extract of that plant.

Previous phytochemical studies carried out on L. tridentata showed that it contains a series of lignans (Konno et al., 1990; Gnabre et al., 1995), one of which being the title molecule. This molecule, commonly called meso-dihydroguaiaretic acid, crystallizes in the space group P212121, with the molecule placed on a non-crystallographic inversion center (Fig. 1). As a consequence, the relative stereochemistry for chiral C atoms is (R,S). The central aliphatic chain is stabilized in an all-trans conformation, and peripheral benzene rings are almost parallel, making a dihedral angle of 5.0 (3)°.

The crystal structure features weak O—H···O hydrogen bonds involving all hydroxy groups. Infinite chains are formed along the short axis [100], with OH functionalities serving both as donor and acceptor groups. As a result, a two-dimensional supramolecular framework is formed, parallel to plane (010) in the crystal (Fig. 2).

Experimental

Aerial parts of L. tridentata were collected in April 2006, at Galeana (Nuevo León, Mexico) and identified by Biologist Marcela González Álvarez. A voucher specimen (024772) is available in the botanic department of the Biology Faculty (UNL, Monterrey, Mexico). After grinding, the dry material (500 g) was placed in an Erlenmeyer vessel filled with hexane (1 l) and left at 298 K for 24 h. The preparation was then filtered and the resulting vegetal material soaked with chloroform for 72 h. The chloroform extract was then filtered and concentrated in vacuo, affording 89 g of extracts. The chloroform extract (80 g) was chromatographed on silica-gel (1600 g) using mixtures of chloroform/ethanol as eluent, giving 13 fractions. The third fraction, eluted with pure CHCl3, afforded colorless crystals, which were separated by filtration. After recrystallization from hexane/ethyl acetate (80:20), pure meso-dihydroguaiaretic acid was obtained (730 mg, m.p. 360 K). Spectroscopic data are consistent with the X-ray structure (see archived CIF). The full characterization by NMR also allowed to confirm that this lignan was early isolated by Waller & Gisvold (1945) from the same plant.

Refinement

As no significant anomalous scattering effects are present in the crystal, measured Friedel pairs (1325) were merged for refinement. Hydroxyl H atoms, H2 and H14, were found in a difference map and refined freely, although O—H bond lengths were restrained to 0.85 (2) Å. Other H atoms were placed in idealized positions and refined as riding to their parent C atom, with bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.96 Å (methyl CH3). Methyl groups were considered as rigid groups free to rotate about their C—C bonds. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier atom) for methyl and hydroxyl groups and Uiso(H) = 1.2Ueq(carrier atom) otherwise.

Figures

Fig. 1.
The title compound, with displacement ellipsoids at the 30% probability level.
Fig. 2.
A part of the crystal structure of the title compound. For H atoms, only hydroxy H atoms have been retained, which are engaged in hydrogen bonding (dashed bonds).

Crystal data

C20H26O4Dx = 1.179 Mg m3
Mr = 330.41Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 54 reflections
a = 5.1355 (8) Åθ = 4.4–11.0°
b = 12.024 (2) ŵ = 0.08 mm1
c = 30.158 (5) ÅT = 298 K
V = 1862.2 (5) Å3Plate, colourless
Z = 40.50 × 0.40 × 0.18 mm
F(000) = 712

Data collection

Siemens P4 diffractometerRint = 0.159
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
graphiteh = −6→6
ω scansk = −14→1
3966 measured reflectionsl = −35→1
1937 independent reflections2 standard reflections every 98 reflections
1196 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3
1937 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = −0.17 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7382 (7)0.4677 (2)0.26965 (7)0.0629 (8)
O20.4317 (8)0.3034 (3)0.24222 (9)0.0732 (10)
H20.580 (6)0.327 (5)0.2350 (16)0.110*
O130.2881 (7)0.5103 (3)0.67472 (8)0.0703 (9)
O140.5820 (8)0.6849 (3)0.69302 (8)0.0712 (10)
H140.451 (8)0.650 (4)0.7037 (14)0.107*
C10.5599 (9)0.4296 (3)0.29987 (11)0.0493 (11)
C20.4047 (9)0.3442 (3)0.28494 (10)0.0505 (11)
C30.2159 (10)0.2992 (3)0.31135 (13)0.0614 (12)
H3A0.11100.24190.30090.074*
C40.1827 (10)0.3406 (4)0.35425 (11)0.0619 (12)
H4A0.05360.31090.37230.074*
C50.3379 (9)0.4242 (4)0.36995 (11)0.0540 (11)
C60.5250 (10)0.4695 (3)0.34251 (11)0.0541 (11)
H6A0.62860.52750.35280.065*
C70.3030 (9)0.4706 (4)0.41668 (11)0.0676 (13)
H7A0.14460.44000.42920.081*
H7B0.28110.55060.41470.081*
C80.5292 (10)0.4456 (3)0.44808 (11)0.0516 (11)
H8B0.68590.47890.43520.062*
C90.4850 (9)0.5012 (3)0.49355 (10)0.0494 (10)
H9A0.32230.47120.50560.059*
C100.7010 (10)0.4725 (3)0.52650 (10)0.0656 (14)
H10B0.70410.39250.53060.079*
H10C0.86680.49410.51370.079*
C110.6747 (9)0.5273 (3)0.57162 (11)0.0556 (12)
C120.4889 (9)0.4893 (3)0.60132 (11)0.0549 (11)
H12C0.38450.42880.59410.066*
C130.4594 (10)0.5421 (3)0.64204 (11)0.0518 (11)
C140.6091 (10)0.6318 (3)0.65279 (11)0.0532 (11)
C150.7953 (11)0.6697 (3)0.62395 (12)0.0658 (12)
H15B0.89900.73040.63130.079*
C160.8261 (11)0.6157 (4)0.58344 (12)0.0634 (13)
H16A0.95350.64060.56390.076*
C170.9001 (11)0.5584 (4)0.28192 (12)0.0683 (13)
H17B1.01870.57460.25820.102*
H17C0.99680.53930.30810.102*
H17D0.79430.62250.28780.102*
C180.5765 (13)0.3217 (3)0.45129 (11)0.0801 (16)
H18C0.58970.29080.42200.120*
H18D0.43420.28730.46670.120*
H18E0.73550.30830.46720.120*
C190.4509 (15)0.6260 (3)0.48960 (12)0.0877 (18)
H19D0.42390.65730.51850.131*
H19E0.30300.64190.47120.131*
H19F0.60430.65800.47660.131*
C200.1181 (10)0.4196 (4)0.66747 (13)0.0668 (13)
H20B0.01490.40720.69360.100*
H20C0.21810.35410.66110.100*
H20D0.00580.43580.64290.100*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.069 (2)0.0660 (18)0.0537 (14)−0.0157 (19)0.0004 (17)−0.0018 (13)
O20.084 (3)0.086 (2)0.0494 (16)−0.026 (2)−0.0004 (17)−0.0086 (14)
O130.078 (2)0.082 (2)0.0511 (14)−0.022 (2)0.0105 (16)−0.0045 (14)
O140.090 (3)0.070 (2)0.0543 (16)−0.020 (2)0.0049 (18)−0.0109 (14)
C10.049 (3)0.054 (2)0.045 (2)−0.002 (2)−0.008 (2)0.0090 (18)
C20.055 (3)0.053 (2)0.044 (2)0.001 (3)−0.008 (2)0.0010 (18)
C30.057 (3)0.064 (3)0.063 (2)−0.011 (3)−0.008 (2)0.004 (2)
C40.049 (3)0.080 (3)0.056 (2)−0.006 (3)−0.007 (2)0.008 (2)
C50.046 (3)0.069 (3)0.047 (2)0.013 (3)−0.005 (2)−0.002 (2)
C60.049 (3)0.061 (3)0.052 (2)0.002 (3)−0.007 (2)0.0010 (19)
C70.050 (3)0.101 (3)0.052 (2)0.011 (3)−0.004 (2)−0.006 (2)
C80.047 (3)0.063 (3)0.0448 (19)−0.004 (3)0.008 (2)0.0034 (18)
C90.045 (2)0.058 (2)0.0451 (19)0.003 (3)0.004 (2)0.0060 (17)
C100.066 (3)0.084 (3)0.047 (2)0.015 (3)0.001 (2)0.000 (2)
C110.055 (3)0.067 (3)0.045 (2)0.010 (3)−0.004 (2)0.005 (2)
C120.059 (3)0.055 (2)0.051 (2)0.001 (3)−0.009 (2)−0.0018 (19)
C130.052 (3)0.059 (2)0.044 (2)0.002 (3)−0.003 (2)0.0064 (19)
C140.067 (3)0.045 (2)0.048 (2)0.002 (3)−0.002 (2)0.0045 (19)
C150.075 (3)0.063 (3)0.060 (2)−0.010 (3)−0.001 (3)0.009 (2)
C160.064 (3)0.076 (3)0.051 (2)−0.007 (3)0.006 (2)0.013 (2)
C170.072 (4)0.067 (3)0.066 (2)−0.016 (3)−0.007 (3)0.012 (2)
C180.116 (5)0.066 (3)0.058 (2)0.016 (4)0.002 (3)−0.004 (2)
C190.122 (5)0.068 (3)0.073 (3)0.025 (4)−0.026 (3)−0.005 (2)
C200.059 (3)0.069 (3)0.073 (3)−0.014 (3)−0.001 (3)0.008 (2)

Geometric parameters (Å, °)

O1—C11.371 (5)C9—H9A0.9800
O1—C171.420 (5)C10—C111.518 (5)
O2—C21.386 (5)C10—H10B0.9700
O2—H20.84 (2)C10—H10C0.9700
O13—C131.376 (5)C11—C161.364 (6)
O13—C201.414 (5)C11—C121.386 (6)
O14—C141.378 (5)C12—C131.391 (5)
O14—H140.86 (2)C12—H12C0.9300
C1—C21.375 (6)C13—C141.363 (6)
C1—C61.384 (5)C14—C151.371 (6)
C2—C31.367 (6)C15—C161.393 (5)
C3—C41.396 (5)C15—H15B0.9300
C3—H3A0.9300C16—H16A0.9300
C4—C51.368 (6)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.380 (6)C17—H17D0.9600
C5—C71.526 (5)C18—H18C0.9600
C6—H6A0.9300C18—H18D0.9600
C7—C81.529 (6)C18—H18E0.9600
C7—H7A0.9700C19—H19D0.9600
C7—H7B0.9700C19—H19E0.9600
C8—C181.512 (6)C19—H19F0.9600
C8—C91.542 (5)C20—H20B0.9600
C8—H8B0.9800C20—H20C0.9600
C9—C191.516 (5)C20—H20D0.9600
C9—C101.529 (6)
C1—O1—C17118.3 (3)C9—C10—H10C108.6
C2—O2—H2102 (4)H10B—C10—H10C107.5
C13—O13—C20119.9 (3)C16—C11—C12118.7 (4)
C14—O14—H14101 (3)C16—C11—C10121.4 (4)
O1—C1—C2114.8 (3)C12—C11—C10119.8 (4)
O1—C1—C6126.0 (4)C11—C12—C13119.6 (4)
C2—C1—C6119.2 (4)C11—C12—H12C120.2
C3—C2—C1121.1 (4)C13—C12—H12C120.2
C3—C2—O2118.2 (4)C14—C13—O13114.2 (3)
C1—C2—O2120.7 (4)C14—C13—C12120.7 (4)
C2—C3—C4119.0 (4)O13—C13—C12125.1 (4)
C2—C3—H3A120.5C13—C14—C15120.4 (4)
C4—C3—H3A120.5C13—C14—O14121.3 (4)
C5—C4—C3120.8 (4)C15—C14—O14118.3 (4)
C5—C4—H4A119.6C14—C15—C16118.7 (4)
C3—C4—H4A119.6C14—C15—H15B120.6
C4—C5—C6119.2 (3)C16—C15—H15B120.6
C4—C5—C7121.3 (4)C11—C16—C15121.8 (4)
C6—C5—C7119.4 (4)C11—C16—H16A119.1
C5—C6—C1120.7 (4)C15—C16—H16A119.1
C5—C6—H6A119.7O1—C17—H17B109.5
C1—C6—H6A119.7O1—C17—H17C109.5
C5—C7—C8114.3 (4)H17B—C17—H17C109.5
C5—C7—H7A108.7O1—C17—H17D109.5
C8—C7—H7A108.7H17B—C17—H17D109.5
C5—C7—H7B108.7H17C—C17—H17D109.5
C8—C7—H7B108.7C8—C18—H18C109.5
H7A—C7—H7B107.6C8—C18—H18D109.5
C18—C8—C7110.8 (4)H18C—C18—H18D109.5
C18—C8—C9113.2 (3)C8—C18—H18E109.5
C7—C8—C9110.7 (4)H18C—C18—H18E109.5
C18—C8—H8B107.3H18D—C18—H18E109.5
C7—C8—H8B107.3C9—C19—H19D109.5
C9—C8—H8B107.3C9—C19—H19E109.5
C19—C9—C10111.0 (4)H19D—C19—H19E109.5
C19—C9—C8112.1 (3)C9—C19—H19F109.5
C10—C9—C8111.9 (3)H19D—C19—H19F109.5
C19—C9—H9A107.2H19E—C19—H19F109.5
C10—C9—H9A107.2O13—C20—H20B109.5
C8—C9—H9A107.2O13—C20—H20C109.5
C11—C10—C9114.9 (4)H20B—C20—H20C109.5
C11—C10—H10B108.6O13—C20—H20D109.5
C9—C10—H10B108.6H20B—C20—H20D109.5
C11—C10—H10C108.6H20C—C20—H20D109.5
C17—O1—C1—C2177.9 (4)C18—C8—C9—C1051.8 (6)
C17—O1—C1—C6−1.7 (6)C7—C8—C9—C10176.9 (3)
O1—C1—C2—C3−179.1 (4)C19—C9—C10—C1152.1 (5)
C6—C1—C2—C30.6 (6)C8—C9—C10—C11178.2 (4)
O1—C1—C2—O2−0.6 (6)C9—C10—C11—C16−104.1 (5)
C6—C1—C2—O2179.0 (4)C9—C10—C11—C1274.2 (5)
C1—C2—C3—C4−0.5 (6)C16—C11—C12—C130.5 (6)
O2—C2—C3—C4−178.9 (4)C10—C11—C12—C13−177.8 (4)
C2—C3—C4—C5−0.6 (6)C20—O13—C13—C14178.9 (4)
C3—C4—C5—C61.5 (6)C20—O13—C13—C12−2.3 (6)
C3—C4—C5—C7179.7 (4)C11—C12—C13—C140.8 (6)
C4—C5—C6—C1−1.4 (6)C11—C12—C13—O13−177.9 (4)
C7—C5—C6—C1−179.6 (4)O13—C13—C14—C15177.5 (4)
O1—C1—C6—C5179.9 (4)C12—C13—C14—C15−1.5 (6)
C2—C1—C6—C50.3 (6)O13—C13—C14—O14−1.1 (6)
C4—C5—C7—C8112.6 (5)C12—C13—C14—O14−180.0 (4)
C6—C5—C7—C8−69.3 (5)C13—C14—C15—C160.7 (7)
C5—C7—C8—C18−56.9 (5)O14—C14—C15—C16179.2 (4)
C5—C7—C8—C9176.7 (3)C12—C11—C16—C15−1.3 (6)
C18—C8—C9—C19177.3 (5)C10—C11—C16—C15177.0 (4)
C7—C8—C9—C19−57.6 (6)C14—C15—C16—C110.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O14i0.84 (2)2.15 (3)2.908 (6)149 (5)
O14—H14···O2ii0.86 (2)2.35 (4)3.030 (5)137 (5)
O2—H2···O10.84 (2)2.14 (5)2.658 (4)119 (5)
O14—H14···O130.86 (2)2.07 (4)2.644 (5)124 (4)

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2391).

References

  • Camacho-Corona, M. D. R., Ramírez-Cabrera, M. A., Santiago, O. G., Garza-González, E., Palacios, I. P. & Luna-Herrera, J. (2008). Phytother. Res.22, 82–85. [PubMed]
  • Gnabre, J., Huang, R. C. C., Bates, R. B., Burns, J. J., Caldera, S., Malcomson, M. E. & McClure, K. J. (1995). Tetrahedron, 51, 12203–12210.
  • Konno, C., Lu, Z. Z., Xue, H. Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C. T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod.53, 396–406. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tyler, V. & Foster, S. (1999). Tyler’s Honest Herbal: a Sensible Guide to the Use of Herbs and Related Remedies, pp. 109–111. New-York: Haworth Herbal Press.
  • Waller, C. W. & Gisvold, O. (1945). J. Am. Pharm. Assoc 34, 78–81.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography