PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m640.
Published online 2009 May 14. doi:  10.1107/S1600536809017115
PMCID: PMC2969658

trans-Diaqua­bis(6-methoxycarbonyl­pyridazine-3-carboxyl­ato-κ2 N,O)zinc(II) dihydrate

Abstract

In the title centrosymmetric complex, [Zn(C7H5N2O4)2(H2O)2]·2H2O, the ZnII ion is coordinated in a trans mode by two symmetry-related bis-chelating 6-methoxycarbonyl­pyridazine-3-carboxyl­ate ligands via N and O atoms, and by two aqua ligand O atoms in axial positions, in a slightly distorted octa­hedral environment. In the crystal structure, complex mol­ecules are linked by inter­molecular O—H(...)O hydrogen bonds between coordinated and solvent water mol­ecules and carboxyl­ate O atoms, forming mol­ecular ribbons propagating along the a axis.

Related literature

For the crystal structures of two zinc complexes with pyridazine-3-carboxyl­ate and water ligands, see: Gryz et al. (2003 [triangle], 2004 [triangle]). For a centrosymmetric dimeric zinc(II) complex with pyridazine-3,6-dicarboxyl­ate and water ligands, see: Gryz et al. (2006 [triangle]). For modifications of pyridazine-3,6-dicarboxylic acid, see: Starosta & Leciejewicz (2004 [triangle]); Sueur et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m640-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H5N2O4)2(H2O)2]·2H2O
  • M r = 499.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m640-efi1.jpg
  • a = 6.3678 (13) Å
  • b = 8.3178 (17) Å
  • c = 9.7717 (19) Å
  • α = 102.99 (3)°
  • β = 108.90 (3)°
  • γ = 94.97 (3)°
  • V = 469.93 (17) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.38 mm−1
  • T = 293 K
  • 0.31 × 0.25 × 0.05 mm

Data collection

  • Kuma KM4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.699, T max = 0.942
  • 2787 measured reflections
  • 2595 independent reflections
  • 2235 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.101
  • S = 1.07
  • 2595 reflections
  • 159 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017115/lh2816sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017115/lh2816Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the molecluar structure of the title compound (I) (Fig.1) the ZnII ion, which is located on a center of symmetry, is coordinated in trans mode by two, symmetry related, bis chelating ligand molecules through their N,O bonding atoms. Two water O atoms in axial positions complete the number of coordinated atoms to six. The coordination geometry is slightly distorted octahedral. Bond distances and bond angles are close to those reported for two zinc complexes with pyridazine-3-carboxylate and water ligands (Gryz et al., 2003, 2004), a complex with pyridazine-3,6-dicarboxylate and water ligands (Gryz et al., 2006) and for both modifications of pyridazine-3,6-dicarboxylic acid (Sueur et al., 1987; Starosta & Leciejewicz, 2004). The ligand molecules and the ZnII ion are almost coplanar [r.m.s. 0.0074 Å]. The carboxylic C12/O11/O12 and the carboxymethyl C18/O21/O22/C19 groups make dihedral angles with the pyridazine ring of 3.0 (2) and 6.8 (1)°, respectively. In the crystal structure complex molecules are linked by hydrogen bonds to form molecular ribbons (Fig. 2). The relevant hydrogen-bond parameters are listed in Table 1.

Experimental

Hot aqueous solutions containing 2 mmol of 6-carboxymethylpyridazine-3-carboxylic acid and 1 mmol of zinc(II) acetate tetrahydrate, respectively, were mixed and boiled for two hours with constant stirring and then left to crystallize at room temperature. After few days, well formed colorless single crystals were found in the mother liquid in the mass of polycrystalline material. The crystals were washed with cold ethanol and dried in air.

Refinement

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93 and 0.96 Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl atoms. Water H atoms were located in difference Fourier maps and were refined isotropically.

Figures

Fig. 1.
The molecular structure of (I) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code:(i) -x + 1, -y + 1, -z + 1. The symmetry related solvent water molecule is not shown.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

[Zn(C7H5N2O4)2(H2O)2]·2H2OZ = 1
Mr = 499.69F(000) = 256
Triclinic, P1Dx = 1.766 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3678 (13) ÅCell parameters from 25 reflections
b = 8.3178 (17) Åθ = 6–15°
c = 9.7717 (19) ŵ = 1.38 mm1
α = 102.99 (3)°T = 293 K
β = 108.90 (3)°Plate, colourless
γ = 94.97 (3)°0.31 × 0.25 × 0.05 mm
V = 469.93 (17) Å3

Data collection

Kuma KM4 four-circle diffractometer2235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
graphiteθmax = 30.1°, θmin = 2.3°
profile data from ω/2θ scansh = 0→8
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = −8→11
Tmin = 0.699, Tmax = 0.942l = −13→13
2787 measured reflections3 standard reflections every 200 reflections
2595 independent reflections intensity decay: 0.0%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0761P)2 + 0.0253P] where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max = 0.002
159 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = −0.75 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.50000.50000.02700 (11)
O110.8125 (2)0.43757 (16)0.58939 (15)0.0313 (3)
O121.0055 (2)0.22915 (17)0.57098 (18)0.0371 (3)
N110.2403 (2)0.15325 (19)0.29574 (15)0.0255 (3)
N120.4382 (2)0.24189 (17)0.39017 (15)0.0235 (3)
C170.8332 (3)0.2900 (2)0.53776 (18)0.0253 (3)
C130.6217 (3)0.1734 (2)0.42383 (17)0.0226 (3)
C140.6202 (3)0.0068 (2)0.36089 (19)0.0278 (3)
H140.7511−0.03930.38320.033*
O10.4013 (2)0.44171 (18)0.67752 (15)0.0326 (3)
H110.382 (6)0.535 (5)0.738 (4)0.060 (9)*
O21−0.1599 (2)−0.0300 (2)0.10069 (19)0.0436 (3)
C160.2308 (3)−0.0079 (2)0.23612 (17)0.0242 (3)
C18−0.0011 (3)−0.0981 (2)0.13509 (17)0.0272 (3)
C150.4172 (3)−0.0876 (2)0.26422 (19)0.0297 (3)
H150.4048−0.20080.21910.036*
O22−0.0035 (2)−0.25921 (17)0.09206 (16)0.0378 (3)
C19−0.2178 (4)−0.3623 (3)−0.0046 (3)0.0479 (5)
H191−0.3354−0.2966−0.00890.072*
H192−0.2459−0.45460.03460.072*
H193−0.2146−0.4041−0.10360.072*
O20.1965 (3)0.6755 (3)0.8035 (2)0.0493 (4)
H120.274 (5)0.379 (4)0.639 (3)0.043 (7)*
H210.207 (6)0.765 (5)0.830 (4)0.061 (11)*
H220.054 (7)0.622 (6)0.738 (4)0.074 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01928 (14)0.01626 (16)0.03827 (16)0.00521 (9)0.00402 (10)0.00167 (10)
O110.0207 (5)0.0216 (6)0.0435 (6)0.0055 (4)0.0047 (5)0.0023 (5)
O120.0205 (5)0.0257 (7)0.0593 (8)0.0086 (5)0.0064 (5)0.0095 (6)
N110.0200 (6)0.0217 (6)0.0317 (6)0.0038 (5)0.0065 (5)0.0048 (5)
N120.0199 (6)0.0177 (6)0.0308 (6)0.0042 (5)0.0073 (5)0.0045 (5)
C170.0190 (6)0.0219 (7)0.0346 (7)0.0040 (5)0.0080 (5)0.0088 (6)
C130.0206 (6)0.0193 (7)0.0288 (6)0.0045 (5)0.0092 (5)0.0071 (5)
C140.0230 (7)0.0223 (8)0.0373 (8)0.0080 (6)0.0098 (6)0.0065 (6)
O10.0249 (6)0.0286 (6)0.0404 (6)0.0026 (5)0.0095 (5)0.0053 (5)
O210.0268 (6)0.0339 (8)0.0563 (8)0.0047 (5)0.0021 (6)0.0040 (6)
C160.0237 (7)0.0200 (7)0.0265 (6)0.0024 (5)0.0072 (5)0.0043 (5)
C180.0271 (7)0.0233 (8)0.0271 (6)0.0004 (6)0.0072 (6)0.0038 (5)
C150.0312 (8)0.0181 (7)0.0369 (8)0.0060 (6)0.0113 (6)0.0022 (6)
O220.0329 (6)0.0231 (6)0.0429 (7)−0.0004 (5)0.0017 (5)−0.0002 (5)
C190.0403 (10)0.0297 (10)0.0535 (11)−0.0072 (9)0.0010 (9)−0.0003 (8)
O20.0391 (8)0.0403 (10)0.0611 (10)0.0129 (7)0.0139 (7)0.0023 (8)

Geometric parameters (Å, °)

Zn1—O112.0617 (13)C14—H140.9300
Zn1—O11i2.0617 (13)O1—H110.90 (4)
Zn1—N12i2.1118 (15)O1—H120.84 (3)
Zn1—N122.1118 (15)O21—C181.192 (2)
Zn1—O1i2.1612 (14)C16—C151.390 (2)
Zn1—O12.1612 (14)C16—C181.500 (2)
O11—C171.253 (2)C18—O221.309 (2)
O12—C171.227 (2)C15—H150.9300
N11—C161.324 (2)O22—C191.445 (2)
N11—N121.3277 (19)C19—H1910.9600
N12—C131.323 (2)C19—H1920.9600
C17—C131.520 (2)C19—H1930.9600
C13—C141.382 (2)O2—H210.72 (4)
C14—C151.371 (2)O2—H220.93 (4)
O11—Zn1—O11i180.0C14—C13—C17122.46 (14)
O11—Zn1—N12i101.21 (6)C15—C14—C13117.11 (16)
O11i—Zn1—N12i78.79 (6)C15—C14—H14121.4
O11—Zn1—N1278.79 (6)C13—C14—H14121.4
O11i—Zn1—N12101.21 (6)Zn1—O1—H11111 (2)
N12i—Zn1—N12180.0Zn1—O1—H12108.5 (18)
O11—Zn1—O1i89.08 (6)H11—O1—H12106 (3)
O11i—Zn1—O1i90.91 (6)N11—C16—C15123.58 (15)
N12i—Zn1—O1i89.79 (6)N11—C16—C18113.77 (15)
N12—Zn1—O1i90.20 (6)C15—C16—C18122.66 (15)
O11—Zn1—O190.92 (6)O21—C18—O22125.50 (16)
O11i—Zn1—O189.08 (6)O21—C18—C16123.73 (16)
N12i—Zn1—O190.21 (6)O22—C18—C16110.77 (15)
N12—Zn1—O189.80 (6)C14—C15—C16117.52 (16)
O1i—Zn1—O1180.00 (6)C14—C15—H15121.2
C17—O11—Zn1116.33 (11)C16—C15—H15121.2
C16—N11—N12117.85 (14)C18—O22—C19116.76 (16)
C13—N12—N11121.74 (14)O22—C19—H191109.5
C13—N12—Zn1112.69 (11)O22—C19—H192109.5
N11—N12—Zn1125.56 (11)H191—C19—H192109.5
O12—C17—O11126.85 (16)O22—C19—H193109.5
O12—C17—C13116.54 (15)H191—C19—H193109.5
O11—C17—C13116.61 (14)H192—C19—H193109.5
N12—C13—C14122.16 (15)H21—O2—H22114 (4)
N12—C13—C17115.37 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H22···O11ii0.93 (4)1.99 (4)2.874 (3)158 (4)
O2—H21···O21iii0.72 (4)2.23 (4)2.940 (3)168 (4)
O1—H12···O12ii0.84 (3)1.86 (3)2.695 (2)174 (3)
O1—H11···O20.90 (4)1.89 (4)2.720 (2)152 (3)

Symmetry codes: (ii) x−1, y, z; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2816).

References

  • Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.
  • Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470–m3472.
  • Gryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem.56, 1505–1511.
  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd. Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd. Wrocław, Poland.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o2219–o2220.
  • Sueur, S., Lagrenee, M., Abraham, F. & Bremard, C. (1987). J. Heterocycl. Chem.24, 1285–1289.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography