PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1313.
Published online 2009 May 20. doi:  10.1107/S1600536809017504
PMCID: PMC2969657

Cyclo­hexa­naminium trichloro­acetate

Abstract

In the crystal of the title compound, C6H14N+·C2Cl3O2 , centrosymmetric assemblies of two cyclo­hexa­naminium cations and two trichloro­acetate ions are linked by N—H(...)O hydrogen bonds, thereby forming R 4 4(12) ring motifs. Further N—H(...)O inter­actions link the tetra­mers into chains propagating along the a axis.

Related literature

For related structures, see: Shahwar et al. (2009 [triangle]); Wang et al. (2005 [triangle]); Jones & Ahrens (1998 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1313-scheme1.jpg

Experimental

Crystal data

  • C6H14N+·C2Cl3O2
  • M r = 262.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1313-efi1.jpg
  • a = 6.7217 (4) Å
  • b = 21.2482 (15) Å
  • c = 10.6908 (6) Å
  • β = 126.590 (3)°
  • V = 1225.98 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 296 K
  • 0.25 × 0.18 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.853, T max = 0.919
  • 13379 measured reflections
  • 2910 independent reflections
  • 1710 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.215
  • S = 1.05
  • 2910 reflections
  • 139 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017504/hb2970sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017504/hb2970Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).

supplementary crystallographic information

Comment

In continuation of synthesizing various organic ammonium salts (Shahwar et al., 2009), the title compound (I), (Fig. 1) is being reported. The crystal structures of (II) Cyclohexylammonium dichloroacetate (Wang et al., 2005) and (III) Cyclohexylamine cyclohexylammonium chloride (Jones & Ahrens, 1998) have been reported.

In (I), the bond distance and bond angles are within normal ranges (Allen et al., 1987). In the title compound, two cyclohexanaminium ions and two trichloroacetate ions are interlinked through intermolecular H-bonding of N—H···O type (Table 1) forming ring motifs R44(12) (Bernstein et al., 1995) (Fig. 2). The ring motifs are further connected through the same along the a axis resulting in one-dimensional polymeric chains. The cyclohexanaminium ions are in chair confirmations with N-atoms at a distance of 0.628 (9)Å from the central plane.

Experimental

A solution of trichloroacetic acid (1.635 g, 0.01 mol) in 20 ml of dichloromethane was prepared. To this solution cyclohexyl amine (1.14 ml, 0.01 mol) was added dropwise and stirred for 30 min. The precipitate were filtered out and recrystallized in hot chloroform to yield colourless rods of (I).

Refinement

The coordinates of H-atoms attached to N1 and C1 were refined. The other H atoms were positioned geometrically (C—H = 0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied for all H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.
Fig. 2.
The partial packing in (I) showing intermolecular H-bonding between NH3 and trichloroacetate ions and the resulting ring motif.

Crystal data

C6H14N+·C2Cl3O2F(000) = 544
Mr = 262.55Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2910 reflections
a = 6.7217 (4) Åθ = 2.6–27.9°
b = 21.2482 (15) ŵ = 0.72 mm1
c = 10.6908 (6) ÅT = 296 K
β = 126.590 (3)°Rod, colorless
V = 1225.98 (14) Å30.25 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2910 independent reflections
Radiation source: fine-focus sealed tube1710 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −27→26
Tmin = 0.853, Tmax = 0.919l = −12→14
13379 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.1089P)2 + 0.5776P] where P = (Fo2 + 2Fc2)/3
2910 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2904 (5)0.05714 (15)0.0547 (4)0.0480 (10)
C10.4574 (6)0.08854 (16)0.2093 (4)0.0463 (10)
C20.7215 (6)0.06696 (19)0.2878 (5)0.0568 (11)
C30.8922 (7)0.0967 (2)0.4465 (5)0.0731 (15)
C40.8100 (8)0.0827 (3)0.5472 (6)0.0816 (18)
C50.5457 (8)0.1032 (2)0.4704 (5)0.0764 (17)
C60.3726 (7)0.0733 (2)0.3100 (5)0.0626 (15)
Cl10.9294 (2)0.30601 (6)0.38465 (15)0.0791 (4)
Cl20.7598 (3)0.28803 (6)0.57059 (16)0.1029 (6)
Cl30.4167 (2)0.28226 (6)0.23280 (17)0.0950 (5)
O10.7893 (5)0.42783 (12)0.4227 (4)0.0711 (9)
O20.4297 (5)0.40429 (14)0.3696 (3)0.0680 (10)
C70.6272 (5)0.39152 (15)0.3948 (3)0.0406 (9)
C80.6778 (7)0.32022 (15)0.3937 (4)0.0488 (10)
H10.432 (7)0.1331 (19)0.186 (4)0.0553*
H1A0.141 (8)0.0678 (19)0.011 (5)0.0575*
H1B0.333 (7)0.0632 (19)−0.002 (5)0.0575*
H1C0.285 (7)0.010 (2)0.071 (4)0.0575*
H2A0.729890.021510.298330.0680*
H2B0.774400.078410.224010.0680*
H3A1.058990.080850.496820.0877*
H3B0.895240.141880.434990.0877*
H4A0.918130.104330.646070.0973*
H4B0.824130.037870.567950.0973*
H5A0.534870.148650.460400.0919*
H5B0.495160.090950.535050.0919*
H6A0.205680.089030.259910.0753*
H6B0.370230.028080.320800.0753*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0401 (14)0.0439 (17)0.0601 (19)0.0011 (12)0.0300 (14)0.0040 (13)
C10.0436 (16)0.0341 (17)0.057 (2)0.0007 (13)0.0278 (16)0.0035 (14)
C20.0426 (17)0.063 (2)0.066 (2)0.0015 (16)0.0331 (17)0.0043 (18)
C30.0463 (19)0.084 (3)0.072 (3)−0.0074 (19)0.026 (2)−0.002 (2)
C40.066 (2)0.093 (4)0.064 (3)−0.002 (2)0.027 (2)−0.007 (2)
C50.079 (3)0.088 (3)0.068 (3)0.003 (2)0.047 (2)−0.010 (2)
C60.0508 (19)0.072 (3)0.074 (3)−0.0019 (18)0.042 (2)−0.001 (2)
Cl10.0779 (7)0.0700 (7)0.0894 (8)0.0142 (5)0.0499 (7)−0.0143 (6)
Cl20.1635 (14)0.0733 (8)0.0817 (9)0.0174 (8)0.0784 (10)0.0311 (6)
Cl30.0748 (7)0.0673 (8)0.0937 (9)−0.0196 (5)0.0236 (7)−0.0294 (6)
O10.0498 (14)0.0401 (14)0.111 (2)−0.0005 (11)0.0413 (15)0.0006 (14)
O20.0564 (15)0.0762 (19)0.0787 (19)0.0110 (13)0.0442 (15)0.0000 (14)
C70.0409 (16)0.0400 (17)0.0342 (15)0.0016 (13)0.0187 (13)0.0004 (12)
C80.0579 (19)0.0354 (17)0.0418 (17)−0.0009 (14)0.0236 (16)0.0005 (13)

Geometric parameters (Å, °)

Cl1—C81.776 (6)C5—C61.523 (6)
Cl2—C81.762 (4)C1—H10.97 (4)
Cl3—C81.758 (4)C2—H2B0.9700
O1—C71.218 (5)C2—H2A0.9700
O2—C71.217 (5)C3—H3A0.9700
N1—C11.492 (5)C3—H3B0.9700
N1—H1A0.85 (6)C4—H4A0.9700
N1—H1C1.02 (4)C4—H4B0.9700
N1—H1B0.82 (5)C5—H5B0.9700
C1—C61.523 (7)C5—H5A0.9700
C1—C21.513 (7)C6—H6B0.9700
C2—C31.508 (6)C6—H6A0.9700
C3—C41.504 (8)C7—C81.554 (5)
C4—C51.510 (9)
C1—N1—H1C109 (2)H3A—C3—H3B108.00
C1—N1—H1A111 (3)C3—C4—H4A109.00
C1—N1—H1B113 (3)C3—C4—H4B109.00
H1B—N1—H1C110 (4)C5—C4—H4A109.00
H1A—N1—H1B112 (5)C5—C4—H4B109.00
H1A—N1—H1C102 (4)H4A—C4—H4B108.00
N1—C1—C2109.8 (3)C4—C5—H5A110.00
N1—C1—C6109.7 (4)C4—C5—H5B109.00
C2—C1—C6110.7 (3)C6—C5—H5A110.00
C1—C2—C3110.6 (4)C6—C5—H5B109.00
C2—C3—C4111.4 (4)H5A—C5—H5B108.00
C3—C4—C5111.6 (4)C1—C6—H6A109.00
C4—C5—C6110.7 (4)C1—C6—H6B110.00
C1—C6—C5110.5 (4)C5—C6—H6A109.00
N1—C1—H1105 (2)C5—C6—H6B110.00
C2—C1—H1114 (3)H6A—C6—H6B108.00
C6—C1—H1108 (3)O1—C7—O2127.7 (3)
C1—C2—H2A110.00O1—C7—C8116.8 (4)
C1—C2—H2B110.00O2—C7—C8115.5 (3)
C3—C2—H2A110.00Cl1—C8—Cl2107.1 (2)
C3—C2—H2B110.00Cl1—C8—Cl3107.2 (2)
H2A—C2—H2B108.00Cl1—C8—C7112.7 (3)
C2—C3—H3A109.00Cl2—C8—Cl3111.3 (2)
C2—C3—H3B109.00Cl2—C8—C7107.5 (2)
C4—C3—H3A109.00Cl3—C8—C7111.1 (3)
C4—C3—H3B109.00
N1—C1—C2—C3−178.3 (3)C4—C5—C6—C1−55.8 (5)
C6—C1—C2—C3−57.1 (4)O1—C7—C8—Cl1−15.1 (4)
N1—C1—C6—C5178.2 (3)O1—C7—C8—Cl2102.6 (4)
C2—C1—C6—C556.9 (4)O1—C7—C8—Cl3−135.5 (3)
C1—C2—C3—C456.5 (5)O2—C7—C8—Cl1165.9 (2)
C2—C3—C4—C5−55.9 (6)O2—C7—C8—Cl2−76.4 (3)
C3—C4—C5—C655.4 (6)O2—C7—C8—Cl345.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (6)1.96 (6)2.788 (6)167 (4)
N1—H1B···O2ii0.82 (5)1.96 (5)2.770 (5)168 (4)
N1—H1C···O1iii1.02 (4)1.83 (4)2.837 (4)169 (4)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2970).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Jones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem.8, 1687-1688.
  • Shahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, o1312. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006–o4007.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography