PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1241.
Published online 2009 May 14. doi:  10.1107/S1600536809016547
PMCID: PMC2969646

2,8-Dimethyl­tricyclo­[5.3.1.13,9]dodecane-syn-2,syn-8-diol–propanoic acid (1/1)

Abstract

The racemic title compound, C14H24O2·C3H6O2, crystallizes in the monoclinic space group P21/c as a 1:1 diol/carboxylic acid cocrystal, AB. The lattice incorporates infinite chains of the alcohol–carboxylic acid–alcohol supra­molecular synthon, ((...)O—H(...)O=C(R)—O—H(...)O—H(...)), in which the hydrogen-bonded mol­ecules (ABA)n surround a pseudo-threefold screw axis. The carboxylic acid group functions like an extended alcohol hydr­oxy group. Each diol, A, takes part in two such threefold screw arrangements, leading to a hydrogen-bonded layer structure, with adjacent layers containing diol mol­ecules of opposite handedness. The central C atom of the propano bridge is disordered over two sites of occupancies 0.75 (1) and 0.25 (1). The methyl group of the propanoic acid molecule is disordered over two sites of occupancies 0.68 (1) and 0.32 (1).

Related literature

For related literature on the diol component of the title compound, see: Bishop (2009 [triangle]); Dance et al. (1986 [triangle]). Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids, see: Alshahateet et al. (2004 [triangle]); Yue et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1241-scheme1.jpg

Experimental

Crystal data

  • C14H24O2·C3H6O2
  • M r = 298.4
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1241-efi1.jpg
  • a = 7.390 (4) Å
  • b = 13.218 (5) Å
  • c = 18.469 (8) Å
  • β = 110.23 (2)°
  • V = 1693 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 K
  • 0.10 mm (radius)

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3188 measured reflections
  • 2942 independent reflections
  • 1786 reflections with I > 2σ(I)
  • R int = 0.014
  • 1 standard reflections frequency: 30 min intensity decay: 29%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.070
  • S = 1.32
  • 2942 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: RAELS (Rae, 2000 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and CrystalMaker (Palmer, 2005 [triangle]); software used to prepare material for publication: local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016547/hg2504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016547/hg2504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Australian Research Council.

supplementary crystallographic information

Comment

The diol component, A, of the title compound, A—B, is a member of the helical tubuland host family, a major characteristic of which is formation of lattice inclusion compounds in the chiral space group P3121 (or its enantiomorph P3221) (Bishop, 2009). A forms this structure when crystallized from non-protic solvents (Dance et al., 1986). Some, but by no means all, of this family of diols can also form hydrogen-bonded co-crystals when crystallized from protic solvents. Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids (Alshahateet et al., 2004; Yue et al., 2006). These co-crystals utilize infinite chains of an alcohol–carboxylic acid–alcohol supramolecular sython, (···O—H···O═ C(R)—O—H···O—H···), in which the carboxylic acid group behaves as if it were an extended alcohol hydroxy group. The diol, A, in the title compound is now found to be the third helical tubuland diol to behave in this manner (Fig. 1). Its 1:1 co-crystals with propanoic acid, A—B, contain chains of hydrogen-bonded molecules (A—B—A-)n surrounding pseudo-threefold screw axes resulting in formation of chiral layers as each diol, A, hydrogen bonds within two such threefold screw arrangements (Figs. 2 and 3). Adjacent layers contain diol molecules with the opposite handedness. The resultant lattice is essentially isostructural with the previous examples in P21/c found to use this novel supramolecular synthon.

Experimental

Racemic 2,8-dimethyltricyclo[5.3.1.13,9]dodecane-syn-2,syn-8-diol was prepared as described (Dance et al., 1986) and the X-ray quality co-crystals obtained by slow concentration of a propanoic acid solution.

Refinement

The central C atom of the propano bridge (C13) was disordered over two sites of occupancies 0.75 (1) and 0.25. For the propanoic acid molecules, the methyl group, C3P, was disordered over two sites of occupancies 0.68 (1) and 0.32. H atoms attached to C were included at calculated positions (C—H = 1.0 Å). The disorder of C13 was taken into account when calculating the H atom positions and occupancies for C13 and the adjacent C12 and C14. The hydroxy H atoms were located on a difference map, and were then fixed at a position along the O···O vector with O—H = 1.0 Å. All H atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Figures

Fig. 1.
Molecular structure of the A and B components of the title compound, with ellipsoids drawn at the 30% probability level.
Fig. 2.
One layer of the structure showing the intermolecular hydrogen bonding linking A and B molecules in chains. C atoms of the propanoic acid are coloured pink.
Fig. 3.
The orthogonal view showing the pseudo 31 symmetric nature of the arrangement in two adjacent layers. C atoms of the propanoic acid are coloured pink.

Crystal data

C14H24O2·C3H6O2F(000) = 656.0
Mr = 298.4Dx = 1.17 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) ÅCell parameters from 11 reflections
b = 13.218 (5) Åθ = 11–12°
c = 18.469 (8) ŵ = 0.08 mm1
β = 110.23 (2)°T = 294 K
V = 1693 (1) Å3Irregular, colourless
Z = 40.10 mm (radius)

Data collection

Enraf–Nonius CAD-4 diffractometerθmax = 25°
ω/2θ scansh = 0→8
3188 measured reflectionsk = 0→15
2942 independent reflectionsl = −22→22
1786 reflections with I > 2σ(I)1 standard reflections every 30 min
Rint = 0.014 intensity decay: 29%

Refinement

Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.070w = 1/[σ2(F) + 0.0004F2]
S = 1.32(Δ/σ)max = 0.003
2942 reflectionsΔρmax = 0.39 e Å3
199 parametersΔρmin = −0.41 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.7617 (2)0.2866 (1)0.2685 (1)0.0659 (5)
O20.4331 (2)0.66382 (11)0.16336 (9)0.0559 (5)
C10.4896 (3)0.3428 (2)0.1636 (1)0.0495 (6)
C20.7107 (3)0.3385 (2)0.1951 (1)0.0496 (6)
C30.8088 (3)0.4441 (2)0.2035 (1)0.0513 (6)
C40.6996 (3)0.5155 (2)0.1356 (1)0.0503 (6)
C50.4789 (3)0.5105 (2)0.1032 (1)0.0475 (6)
C60.3662 (3)0.5599 (2)0.1493 (1)0.0472 (6)
C70.3899 (3)0.5039 (2)0.2262 (1)0.0528 (6)
C80.3898 (4)0.3878 (2)0.2161 (1)0.0579 (7)
C90.4195 (3)0.4001 (2)0.0871 (1)0.0536 (6)
C100.7824 (4)0.2728 (2)0.1425 (2)0.0718 (8)
C110.1519 (4)0.5658 (2)0.1009 (2)0.0656 (8)
C120.8701 (4)0.4943 (2)0.2831 (2)0.0695 (8)
C130.7455 (5)0.5768 (3)0.2979 (2)0.067 (1)0.75
C13'0.7388 (9)0.4872 (7)0.3304 (4)0.067 (1)0.25
C140.5481 (5)0.5443 (2)0.2994 (1)0.0707 (8)
O1P0.5377 (3)0.7775 (1)0.0674 (1)0.0740 (6)
O2P0.8391 (3)0.7734 (2)0.1482 (1)0.0801 (6)
C1P0.7228 (4)0.7995 (2)0.0878 (2)0.0667 (7)
C2P0.7710 (5)0.8619 (3)0.0287 (2)0.096 (1)
C3P0.9587 (9)0.8359 (5)0.0180 (3)0.119 (2)0.68
C3'P0.6746 (18)0.9630 (8)0.0220 (6)0.119 (2)0.32
H1010.90310.28190.29800.066
H1020.36220.70850.18820.056
HC10.44270.27160.15230.049
HC30.93350.43010.19550.051
H1C40.74660.50010.09210.050
H2C40.73570.58650.15360.050
HC50.43770.54540.05200.047
HC70.26660.51810.23540.053
H1C80.25200.36570.19530.058
H2C80.45350.35800.26860.058
H1C90.27590.39510.06360.054
H2C90.47950.37060.05090.054
H1C100.74990.30610.09090.072
H2C100.92540.26430.16600.072
H3C100.71880.20500.13600.072
H1C110.09790.49580.08940.066
H2C110.08200.60350.13010.066
H3C110.13540.60180.05140.066
H1C121.00070.52420.29290.0690.75
H2C120.87940.43940.32150.0690.75
H1'C120.88860.56790.27520.0690.25
H2'C120.99630.46350.31470.0690.25
H1C130.72370.62890.25650.0670.75
H2C130.81850.60790.34910.0670.75
H1C13'0.81140.51420.38310.0670.25
H2C13'0.70850.41410.33420.0670.25
H1C140.57270.48970.33910.0710.75
H2C140.49210.60470.31660.0710.75
H1'C140.49200.54560.34150.0710.25
H2'C140.57850.61500.28800.0710.25
H101P0.49800.73440.10380.074
H1C2P0.77700.93450.04470.0960.68
H2C2P0.66490.8527−0.02210.0960.68
H1'C2P0.72360.8267−0.02240.0960.32
H2'C2P0.91380.87130.04520.0960.32
H1C3P0.97770.8811−0.02220.1190.68
H2C3P1.06750.84560.06790.1190.68
H3C3P0.95540.76380.00110.1190.68
H1C3P'0.70561.0050−0.01720.1190.32
H2C3P'0.53180.95330.00560.1190.32
H3C3P'0.72190.99790.07320.1190.32

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.052 (1)0.071 (1)0.071 (1)−0.0012 (9)0.0151 (9)0.0241 (9)
O20.060 (1)0.046 (1)0.068 (1)−0.0018 (8)0.0298 (8)−0.0045 (8)
C10.049 (1)0.041 (1)0.059 (1)−0.008 (1)0.021 (1)−0.002 (1)
C20.050 (1)0.045 (1)0.057 (1)−0.001 (1)0.022 (1)0.003 (1)
C30.046 (1)0.048 (1)0.061 (2)−0.002 (1)0.020 (1)0.000 (1)
C40.051 (1)0.047 (1)0.060 (2)−0.002 (1)0.028 (1)0.000 (1)
C50.051 (1)0.049 (1)0.044 (1)−0.003 (1)0.019 (1)0.001 (1)
C60.047 (1)0.043 (1)0.054 (1)−0.003 (1)0.020 (1)−0.002 (1)
C70.053 (2)0.058 (1)0.056 (1)0.003 (1)0.030 (1)0.005 (1)
C80.054 (2)0.057 (2)0.070 (2)−0.002 (1)0.031 (1)0.007 (1)
C90.054 (2)0.052 (1)0.053 (2)−0.003 (1)0.016 (1)−0.005 (1)
C100.067 (2)0.058 (2)0.099 (2)0.005 (1)0.039 (2)−0.010 (2)
C110.047 (2)0.070 (2)0.074 (2)0.002 (1)0.014 (1)0.004 (1)
C120.059 (2)0.067 (2)0.068 (2)0.000 (1)0.003 (1)−0.008 (1)
C130.069 (2)0.068 (2)0.055 (2)−0.005 (2)0.008 (2)−0.015 (2)
C13'0.069 (2)0.068 (2)0.055 (2)−0.005 (2)0.008 (2)−0.015 (2)
C140.087 (2)0.077 (2)0.049 (2)0.002 (2)0.025 (1)−0.008 (1)
O1P0.068 (1)0.083 (1)0.066 (1)−0.010 (1)0.0154 (9)0.008 (1)
O2P0.067 (1)0.087 (1)0.074 (1)−0.013 (1)0.008 (1)0.011 (1)
C1P0.073 (2)0.058 (2)0.067 (2)−0.012 (2)0.022 (2)−0.002 (1)
C2P0.105 (3)0.099 (3)0.084 (2)−0.020 (2)0.031 (2)0.017 (2)
C3P0.136 (5)0.143 (5)0.083 (3)−0.002 (4)0.046 (3)0.024 (3)
C3'P0.136 (5)0.143 (5)0.083 (3)−0.002 (4)0.046 (3)0.024 (3)

Geometric parameters (Å, °)

O1—C21.448 (3)C11—H2C111.000
O1—H1011.000C11—H3C111.000
O2—C61.453 (3)C12—C131.512 (4)
O2—H1021.000C12—C13'1.516 (5)
C1—C21.535 (3)C12—H1C121.000
C1—C81.527 (3)C12—H2C121.000
C1—C91.527 (3)C12—H1'C121.000
C1—HC11.000C12—H2'C121.000
C2—C31.555 (3)C13—C141.531 (4)
C2—C101.528 (3)C13—H1C131.000
C3—C41.555 (3)C13—H2C131.000
C3—C121.532 (3)C13'—C141.525 (5)
C3—HC31.000C13'—H1C13'1.000
C4—C51.532 (3)C13'—H2C13'1.000
C4—H1C41.000C14—H1C141.000
C4—H2C41.000C14—H2C141.000
C5—C61.529 (3)O1P—C1P1.319 (3)
C5—C91.524 (3)O1P—H101P1.000
C5—HC51.000O2P—C1P1.199 (3)
C6—C71.556 (3)C1P—C2P1.506 (4)
C6—C111.528 (3)C2P—C3P1.507 (6)
C7—C81.547 (3)C2P—C3'P1.499 (8)
C7—C141.545 (4)C2P—H1C2P1.000
C7—HC71.000C2P—H2C2P1.000
C8—H1C81.000C2P—H1'C2P1.000
C8—H2C81.000C2P—H2'C2P1.000
C9—H1C91.000C3P—H1C3P1.000
C9—H2C91.000C3P—H2C3P1.000
C10—H1C101.000C3P—H3C3P1.000
C10—H2C101.000C3'P—H1C3P'1.000
C10—H3C101.000C3'P—H2C3P'1.000
C11—H1C111.000C3'P—H3C3P'1.000
C2—O1—H101115.1C6—C11—H1C11109.5
C6—O2—H102116.1C6—C11—H2C11109.5
C2—C1—C8117.3 (2)C6—C11—H3C11109.5
C2—C1—C9110.2 (2)H1C11—C11—H2C11109.5
C2—C1—HC1106.9H1C11—C11—H3C11109.5
C8—C1—C9108.1 (2)H2C11—C11—H3C11109.5
C8—C1—HC1106.9C3—C12—C13119.4 (2)
C9—C1—HC1106.9C3—C12—C13'119.4 (4)
O1—C2—C1105.7 (2)C3—C12—H1C12106.9
O1—C2—C3111.7 (2)C3—C12—H2C12106.9
O1—C2—C10106.9 (2)C3—C12—H1'C12106.9
C1—C2—C3113.8 (2)C3—C12—H2'C12106.9
C1—C2—C10109.8 (2)C13—C12—H1C12106.9
C3—C2—C10108.8 (2)C13—C12—H2C12106.9
C2—C3—C4111.7 (2)C13'—C12—H1'C12106.9
C2—C3—C12117.2 (2)C13'—C12—H2'C12106.9
C2—C3—HC3103.9H1C12—C12—H2C12109.5
C4—C3—C12114.2 (2)H1'C12—C12—H2'C12109.5
C4—C3—HC3103.9C12—C13—C14116.4 (3)
C12—C3—HC3103.9C12—C13—H1C13107.7
C3—C4—C5118.3 (2)C12—C13—H2C13107.7
C3—C4—H1C4107.2C14—C13—H1C13107.7
C3—C4—H2C4107.2C14—C13—H2C13107.7
C5—C4—H1C4107.2H1C13—C13—H2C13109.5
C5—C4—H2C4107.2C12—C13'—C14116.5 (4)
H1C4—C4—H2C4109.5C12—C13'—H1C13'107.7
C4—C5—C6118.4 (2)C12—C13'—H2C13'107.7
C4—C5—C9108.3 (2)C14—C13'—H1C13'107.7
C4—C5—HC5106.5C14—C13'—H2C13'107.7
C6—C5—C9110.0 (2)H1C13'—C13'—H2C13'109.5
C6—C5—HC5106.5C7—C14—C13121.3 (2)
C9—C5—HC5106.5C7—C14—C13'118.6 (4)
O2—C6—C5106.6 (2)C7—C14—H1C14106.4
O2—C6—C7111.3 (2)C7—C14—H2C14106.4
O2—C6—C11106.0 (2)C13—C14—H1C14106.4
C5—C6—C7113.3 (2)C13—C14—H2C14106.4
C5—C6—C11110.5 (2)H1C14—C14—H2C14109.5
C7—C6—C11109.0 (2)C1P—O1P—H101P116.7
C6—C7—C8111.5 (2)O1P—C1P—O2P122.8 (3)
C6—C7—C14116.5 (2)O1P—C1P—C2P113.2 (3)
C6—C7—HC7104.2O2P—C1P—C2P124.0 (3)
C8—C7—C14114.6 (2)C1P—C2P—C3P115.4 (3)
C8—C7—HC7104.2C1P—C2P—C3'P108.8 (5)
C14—C7—HC7104.2C1P—C2P—H1C2P108.0
C1—C8—C7118.9 (2)C1P—C2P—H2C2P108.0
C1—C8—H1C8107.1C1P—C2P—H1'C2P109.6
C1—C8—H2C8107.1C1P—C2P—H2'C2P109.6
C7—C8—H1C8107.1H1C2P—C2P—H2C2P109.5
C7—C8—H2C8107.1H1'C2P—C2P—H2'C2P109.5
H1C8—C8—H2C8109.5C2P—C3P—H1C3P109.5
C1—C9—C5108.2 (2)C2P—C3P—H2C3P109.5
C1—C9—H1C9109.8C2P—C3P—H3C3P109.5
C1—C9—H2C9109.8H1C3P—C3P—H2C3P109.5
C5—C9—H1C9109.8H1C3P—C3P—H3C3P109.5
C5—C9—H2C9109.8H2C3P—C3P—H3C3P109.5
H1C9—C9—H2C9109.5C2P—C3'P—H1C3P'109.5
C2—C10—H1C10109.5C2P—C3'P—H2C3P'109.5
C2—C10—H2C10109.5C2P—C3'P—H3C3P'109.5
C2—C10—H3C10109.5H1C3P'—C3'P—H2C3P'109.5
H1C10—C10—H2C10109.5H1C3P'—C3'P—H3C3P'109.5
H1C10—C10—H3C10109.5H2C3P'—C3'P—H3C3P'109.5
H2C10—C10—H3C10109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···O2Pi1.001.822.822 (3)180
O2—H102···O1ii1.001.752.746 (3)180
O1P—H101P···O21.001.642.635 (3)180

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2504).

References

  • Alshahateet, S. F., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2004). CrystEngComm, 6, 5–10.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bishop, R. (2009). Acc. Chem. Res.42, 67–78. [PubMed]
  • Dance, I. G., Bishop, R., Hawkins, S. C., Lipari, T., Scudder, M. L. & Craig, D. C. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1299–1307.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Palmer, D. (2005). CrystalMaker CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. htttp://www.CrystalMakerco.uk.
  • Rae, A. D. (2000). RAELS Australian National University, Canberra.
  • Yue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250–256.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography