PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1444.
Published online 2009 May 29. doi:  10.1107/S1600536809019618
PMCID: PMC2969643

1,1′,3,3′,5,5′-Hexamethyl­spiro­[furo[2,3-d]pyrimidine-6(5H),5′-pyrimidine]-2,2′,4,4′,6′(1H,3H,1′H,3′H,5′H)-penta­one

Abstract

In the title mol­ecule, C15H18N4O6, the fused 2,3-dihydro­furan ring has an envelope conformation and the spiro pyrimidine ring has a half-chair conformation. In the crystal, short inter­molecular O(...)C contacts of 2.835 (4) and 2.868 (4) Å between the carbonyl groups indicate the existence of electrostatic inter­actions, which link the mol­ecules into corrugated sheets parallel to the ab plane.

Related literature

For applications of furo[2,3-d]pyrimidine derivatives, see Cody et al. (1997 [triangle]). For a related crystal structure, see Malathy Sony et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1444-scheme1.jpg

Experimental

Crystal data

  • C15H18N4O6
  • M r = 350.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1444-efi1.jpg
  • a = 8.0122 (9) Å
  • b = 11.9181 (14) Å
  • c = 16.4037 (19) Å
  • V = 1566.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 120 K
  • 0.21 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.980, T max = 0.989
  • 15042 measured reflections
  • 1964 independent reflections
  • 1589 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.089
  • S = 1.01
  • 1964 reflections
  • 232 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected interatomic distances (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019618/cv2553sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019618/cv2553Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Urmia University Research Council. We also thank Professor M. Yu. Antipin and Dr Z. Starikova for the X-ray data collection at the X-ray Structural Centre (XRSC), Moscow, Russia.

supplementary crystallographic information

Comment

Fused pyrimidine compounds are valued in view of their well-known biological properties. As example, the furo[2,3-d]pyrimidine antifolate derivative introduced as novel classical antitumor agent (Cody et al., 1997). Herewith we present the title compound, (I).

In (I) (Fig. 1),the fused 2,3-dihydrofuran ring has an envelope conformation, and spiro pyrimidine ring has a half-chair conformation. Spiro pyrimidine ring is nearly perpendicular to 2,3-dihydro furan ring moiety, as was observed earlier in the related compound (Malathy Sony et al., 2002). Torsion angles C2–C1–O4–C7 and C2–C1–C5–C6 are -99.39 (3)° and 94.87 (3)°, respectively. In the crystal, short intermolecular O···C contacts (Table 1) between the carbonyl groups prove an existing of electrostatic interactions, which link the molecules into corrugated sheets parallel to ab plane.

Experimental

In a 50 ml round bottom flask (in an ice-bath) equipped with magnetic stirrer was added 200 mg (1.89 mmol) cyanogen bromide in 10 ml acetone. Then a solution of 295 mg (1.89 mmol) 1,3-dimethylbarbituric acid and 202 mg (2.00 mmol) triethylamine in acetone was added drop wise by reparatory funnel during 1 h. The white solid precipitated after few minutes and the color of liquid turned red. Initially, the precipitate was dissolved in acetone. A white crystalline colorless solid was formed after allowing the solution to stand overnight (228 mg, 50% yield) as a white crystalline solid, m.p. 210–212 °C (decomps.); FT—IR (KBr), ν, cm-1: 2981.54, 2954.71, 1689.08, 1646.35; 1H NMR(CDCl3, 300 MHz) δ 3.434 (s, 3H); 3.355 (s, 6H), 3.283 (s, 3H), 1.402 (s,6H); 13C NMR (CDCl3, 75 MHz) δ 164.317, 160.207, 158.898, 151.033, 150.145, 93.220, 91.139, 53.872, 29.625, 29.081, 27.852, 23.318.

Refinement

The C-bound H atoms were geometrically positioned (C–H 0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). In the absence of significant anomalous scatterers, 1855 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C15H18N4O6Dx = 1.486 Mg m3
Mr = 350.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 985 reflections
a = 8.0122 (9) Åθ = 3–25°
b = 11.9181 (14) ŵ = 0.12 mm1
c = 16.4037 (19) ÅT = 120 K
V = 1566.4 (3) Å3Prism, white
Z = 40.21 × 0.14 × 0.12 mm
F(000) = 736

Data collection

Bruker SMART 1000 CCD area-detector diffractometer1964 independent reflections
Radiation source: fine-focus sealed tube1589 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −10→10
Tmin = 0.980, Tmax = 0.989k = −15→15
15042 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.01P)2 + 2P] where P = (Fo2 + 2Fc2)/3
1964 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5464 (3)0.52840 (19)0.75372 (15)0.0307 (6)
O20.8328 (3)0.8456 (2)0.69785 (15)0.0358 (6)
O30.6235 (3)0.7991 (2)0.94992 (14)0.0352 (6)
O40.4987 (3)0.59548 (19)0.90811 (15)0.0262 (5)
O5−0.0582 (3)0.6474 (2)0.83863 (15)0.0333 (6)
O60.0962 (3)0.3545 (2)1.00229 (15)0.0306 (6)
N10.6700 (4)0.6929 (2)0.71936 (16)0.0247 (6)
N20.6981 (4)0.8365 (2)0.81937 (16)0.0251 (6)
N40.0212 (3)0.5008 (2)0.92003 (17)0.0242 (6)
N50.3017 (3)0.4687 (2)0.95490 (17)0.0242 (6)
C10.5068 (4)0.6811 (3)0.84600 (19)0.0229 (7)
C20.5782 (4)0.6254 (3)0.7708 (2)0.0250 (7)
C30.7394 (4)0.7956 (3)0.7427 (2)0.0254 (7)
C40.6170 (4)0.7750 (3)0.8785 (2)0.0252 (7)
C50.3186 (4)0.7229 (3)0.8311 (2)0.0276 (8)
C60.2301 (4)0.6208 (3)0.8654 (2)0.0242 (7)
C70.3382 (4)0.5599 (3)0.9086 (2)0.0236 (7)
C80.1355 (4)0.4355 (3)0.9614 (2)0.0237 (7)
C90.0562 (4)0.5958 (3)0.8712 (2)0.0258 (8)
C100.7301 (5)0.6431 (3)0.6434 (2)0.0334 (8)
H10A0.63640.60840.61430.050*
H10B0.81420.58580.65570.050*
H10C0.77990.70160.60920.050*
C110.7816 (5)0.9384 (3)0.8465 (2)0.0321 (8)
H11A0.70270.98510.87710.048*
H11B0.82230.98020.79900.048*
H11C0.87600.91860.88170.048*
C120.2810 (5)0.7474 (3)0.7410 (2)0.0337 (9)
H12A0.16200.76450.73460.051*
H12B0.30950.68170.70790.051*
H12C0.34740.81190.72290.051*
C130.2770 (5)0.8270 (3)0.8822 (2)0.0358 (9)
H13A0.15720.84280.87840.054*
H13B0.34000.89150.86150.054*
H13C0.30720.81340.93920.054*
C14−0.1530 (4)0.4664 (3)0.9244 (2)0.0326 (8)
H14A−0.15960.38890.94420.049*
H14B−0.20340.47120.87010.049*
H14C−0.21330.51590.96190.049*
C150.4309 (4)0.3990 (3)0.9914 (2)0.0303 (8)
H15A0.52060.44691.01230.045*
H15B0.47600.34790.95010.045*
H15C0.38300.35531.03630.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0313 (14)0.0252 (12)0.0355 (13)−0.0023 (11)0.0011 (12)−0.0009 (11)
O20.0412 (15)0.0304 (13)0.0357 (14)−0.0072 (13)0.0071 (12)0.0047 (11)
O30.0416 (16)0.0377 (14)0.0262 (12)−0.0048 (13)0.0006 (12)−0.0017 (11)
O40.0207 (12)0.0275 (12)0.0304 (12)−0.0015 (10)−0.0002 (10)0.0055 (11)
O50.0240 (12)0.0359 (14)0.0399 (14)0.0027 (12)−0.0043 (12)0.0057 (12)
O60.0257 (13)0.0307 (13)0.0353 (13)−0.0014 (11)0.0014 (12)0.0063 (12)
N10.0264 (15)0.0257 (14)0.0221 (13)0.0007 (13)0.0016 (12)0.0010 (11)
N20.0262 (15)0.0225 (14)0.0267 (14)−0.0013 (12)0.0014 (13)0.0002 (12)
N40.0215 (14)0.0243 (14)0.0269 (14)0.0011 (12)0.0009 (12)−0.0002 (12)
N50.0228 (15)0.0228 (14)0.0268 (14)0.0009 (12)0.0004 (13)0.0025 (12)
C10.0207 (15)0.0247 (16)0.0234 (16)−0.0003 (14)0.0014 (14)0.0014 (14)
C20.0215 (16)0.0264 (17)0.0272 (17)0.0033 (15)−0.0023 (15)0.0004 (15)
C30.0258 (18)0.0242 (16)0.0262 (16)−0.0007 (15)−0.0021 (15)0.0017 (14)
C40.0227 (17)0.0257 (17)0.0274 (17)0.0034 (14)0.0007 (14)0.0008 (14)
C50.0196 (16)0.0285 (18)0.0346 (18)0.0030 (15)0.0035 (15)0.0044 (15)
C60.0218 (16)0.0252 (17)0.0255 (16)0.0005 (14)0.0028 (14)0.0021 (14)
C70.0224 (17)0.0210 (16)0.0275 (17)−0.0015 (15)0.0016 (15)−0.0016 (14)
C80.0225 (17)0.0243 (17)0.0244 (16)0.0015 (15)0.0015 (14)−0.0005 (15)
C90.0267 (18)0.0261 (18)0.0248 (17)0.0020 (15)0.0005 (15)−0.0016 (15)
C100.039 (2)0.0317 (19)0.0296 (18)0.0008 (18)0.0025 (17)−0.0012 (16)
C110.0331 (19)0.0269 (18)0.0363 (19)−0.0054 (16)0.0001 (17)−0.0015 (16)
C120.0284 (19)0.0342 (19)0.038 (2)0.0031 (17)−0.0037 (17)0.0085 (17)
C130.0293 (19)0.0268 (18)0.051 (2)0.0024 (16)0.0097 (19)0.0012 (18)
C140.0195 (17)0.038 (2)0.040 (2)−0.0035 (17)0.0002 (16)0.0034 (17)
C150.0242 (17)0.0302 (19)0.0364 (19)0.0043 (16)−0.0023 (17)0.0091 (16)

Geometric parameters (Å, °)

O1—C21.216 (4)C5—C131.534 (5)
O2—C31.206 (4)C5—C121.537 (5)
O3—C41.208 (4)C6—C71.334 (5)
O4—C71.354 (4)C6—C91.428 (5)
O4—C11.443 (4)C10—H10A0.9800
O5—C91.226 (4)C10—H10B0.9800
O6—C81.217 (4)C10—H10C0.9800
N1—C21.378 (4)C11—H11A0.9800
N1—C31.399 (4)C11—H11B0.9800
N1—C101.462 (4)C11—H11C0.9800
N2—C41.378 (4)C12—H12A0.9800
N2—C31.389 (4)C12—H12B0.9800
N2—C111.457 (4)C12—H12C0.9800
N4—C81.380 (4)C13—H13A0.9800
N4—C91.416 (4)C13—H13B0.9800
N4—C141.457 (4)C13—H13C0.9800
N5—C71.358 (4)C14—H14A0.9800
N5—C81.393 (4)C14—H14B0.9800
N5—C151.456 (4)C14—H14C0.9800
C1—C21.513 (4)C15—H15A0.9800
C1—C41.522 (5)C15—H15B0.9800
C1—C51.607 (5)C15—H15C0.9800
C5—C61.516 (5)
C8···O2i2.835 (4)C3···O5ii2.868 (4)
C7—O4—C1105.6 (3)O6—C8—N5121.0 (3)
C2—N1—C3123.8 (3)N4—C8—N5115.8 (3)
C2—N1—C10117.4 (3)O5—C9—N4120.0 (3)
C3—N1—C10117.2 (3)O5—C9—C6126.6 (3)
C4—N2—C3124.3 (3)N4—C9—C6113.4 (3)
C4—N2—C11116.4 (3)N1—C10—H10A109.5
C3—N2—C11117.3 (3)N1—C10—H10B109.5
C8—N4—C9126.8 (3)H10A—C10—H10B109.5
C8—N4—C14116.9 (3)N1—C10—H10C109.5
C9—N4—C14116.3 (3)H10A—C10—H10C109.5
C7—N5—C8118.5 (3)H10B—C10—H10C109.5
C7—N5—C15122.2 (3)N2—C11—H11A109.5
C8—N5—C15119.1 (3)N2—C11—H11B109.5
O4—C1—C2106.4 (3)H11A—C11—H11B109.5
O4—C1—C4107.4 (3)N2—C11—H11C109.5
C2—C1—C4112.9 (3)H11A—C11—H11C109.5
O4—C1—C5106.5 (3)H11B—C11—H11C109.5
C2—C1—C5111.5 (3)C5—C12—H12A109.5
C4—C1—C5111.7 (3)C5—C12—H12B109.5
O1—C2—N1121.7 (3)H12A—C12—H12B109.5
O1—C2—C1121.7 (3)C5—C12—H12C109.5
N1—C2—C1116.4 (3)H12A—C12—H12C109.5
O2—C3—N2121.8 (3)H12B—C12—H12C109.5
O2—C3—N1120.8 (3)C5—C13—H13A109.5
N2—C3—N1117.3 (3)C5—C13—H13B109.5
O3—C4—N2122.4 (3)H13A—C13—H13B109.5
O3—C4—C1122.6 (3)C5—C13—H13C109.5
N2—C4—C1114.7 (3)H13A—C13—H13C109.5
C6—C5—C13110.2 (3)H13B—C13—H13C109.5
C6—C5—C12114.7 (3)N4—C14—H14A109.5
C13—C5—C12109.2 (3)N4—C14—H14B109.5
C6—C5—C197.7 (3)H14A—C14—H14B109.5
C13—C5—C1111.8 (3)N4—C14—H14C109.5
C12—C5—C1112.9 (3)H14A—C14—H14C109.5
C7—C6—C9119.0 (3)H14B—C14—H14C109.5
C7—C6—C5109.3 (3)N5—C15—H15A109.5
C9—C6—C5130.4 (3)N5—C15—H15B109.5
C6—C7—O4116.3 (3)H15A—C15—H15B109.5
C6—C7—N5126.4 (3)N5—C15—H15C109.5
O4—C7—N5117.3 (3)H15A—C15—H15C109.5
O6—C8—N4123.1 (3)H15B—C15—H15C109.5
C7—O4—C1—C2−99.4 (3)C4—C1—C5—C13−22.4 (4)
C7—O4—C1—C4139.5 (3)O4—C1—C5—C12−141.8 (3)
C7—O4—C1—C519.7 (3)C2—C1—C5—C12−26.1 (4)
C3—N1—C2—O1−166.1 (3)C4—C1—C5—C12101.2 (3)
C10—N1—C2—O1−0.8 (5)C13—C5—C6—C7−101.6 (3)
C3—N1—C2—C119.0 (5)C12—C5—C6—C7134.8 (3)
C10—N1—C2—C1−175.7 (3)C1—C5—C6—C715.1 (4)
O4—C1—C2—O135.2 (4)C13—C5—C6—C964.9 (5)
C4—C1—C2—O1152.8 (3)C12—C5—C6—C9−58.7 (5)
C5—C1—C2—O1−80.6 (4)C1—C5—C6—C9−178.4 (4)
O4—C1—C2—N1−149.9 (3)C9—C6—C7—O4−172.6 (3)
C4—C1—C2—N1−32.3 (4)C5—C6—C7—O4−4.3 (4)
C5—C1—C2—N194.4 (3)C9—C6—C7—N54.8 (5)
C4—N2—C3—O2−168.0 (3)C5—C6—C7—N5173.1 (3)
C11—N2—C3—O2−4.5 (5)C1—O4—C7—C6−10.5 (4)
C4—N2—C3—N111.2 (5)C1—O4—C7—N5171.8 (3)
C11—N2—C3—N1174.8 (3)C8—N5—C7—C6−2.2 (5)
C2—N1—C3—O2172.2 (3)C15—N5—C7—C6171.9 (3)
C10—N1—C3—O26.9 (5)C8—N5—C7—O4175.2 (3)
C2—N1—C3—N2−7.0 (5)C15—N5—C7—O4−10.7 (5)
C10—N1—C3—N2−172.3 (3)C9—N4—C8—O6−179.9 (3)
C3—N2—C4—O3158.8 (3)C14—N4—C8—O6−2.3 (5)
C11—N2—C4—O3−4.9 (5)C9—N4—C8—N51.2 (5)
C3—N2—C4—C1−26.5 (5)C14—N4—C8—N5178.7 (3)
C11—N2—C4—C1169.9 (3)C7—N5—C8—O6−179.8 (3)
O4—C1—C4—O3−32.7 (4)C15—N5—C8—O65.9 (5)
C2—C1—C4—O3−149.7 (3)C7—N5—C8—N4−0.9 (5)
C5—C1—C4—O383.7 (4)C15—N5—C8—N4−175.1 (3)
O4—C1—C4—N2152.5 (3)C8—N4—C9—O5−179.0 (3)
C2—C1—C4—N235.5 (4)C14—N4—C9—O53.5 (5)
C5—C1—C4—N2−91.1 (3)C8—N4—C9—C61.3 (5)
O4—C1—C5—C6−20.8 (3)C14—N4—C9—C6−176.3 (3)
C2—C1—C5—C694.9 (3)C7—C6—C9—O5176.2 (3)
C4—C1—C5—C6−137.8 (3)C5—C6—C9—O510.8 (6)
O4—C1—C5—C1394.6 (3)C7—C6—C9—N4−4.1 (5)
C2—C1—C5—C13−149.7 (3)C5—C6—C9—N4−169.5 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2553).

References

  • Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638–649. [PubMed]
  • Malathy Sony, S. M., Kuppayee, M., Ponnuswamy, M. N., Bhasker Reddy, D., Padmavathi, V. & Fun, H.-K. (2002). Acta Cryst. C58, o678–o680. [PubMed]
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography