PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m646.
Published online 2009 May 14. doi:  10.1107/S160053680901719X
PMCID: PMC2969640

Tetra-μ-acetato-κ8 O:O′-bis[(N 2,N 2-di­methyl­pyrazin-2-amine-κN 4)copper(II)]

Abstract

The title binuclear complex, [Cu2(C2H3O2)4(C6H9N3)2], lies on an inversion center with four acetate ligands bridging two CuII ions and two monodentate N,N-dimethyl­pyrazine-2-amine ligands coordinating each CuII ion via N atoms, forming slightly distorted square-pyramidal environments.

Related literature

For related structures, see: Zhang et al. (2007 [triangle]); Li et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m646-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C6H9N3)2]
  • M r = 609.58
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m646-efi1.jpg
  • a = 8.1052 (13) Å
  • b = 8.1775 (13) Å
  • c = 10.6534 (17) Å
  • α = 67.826 (2)°
  • β = 80.013 (2)°
  • γ = 87.328 (2)°
  • V = 643.84 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.71 mm−1
  • T = 298 K
  • 0.68 × 0.41 × 0.31 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.390, T max = 0.620
  • 3494 measured reflections
  • 2465 independent reflections
  • 2317 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.094
  • S = 1.09
  • 2465 reflections
  • 167 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901719X/lh2807sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901719X/lh2807Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Both acetate anions and pyrazine derivatives are useful ligands and a large number of multi-atom complexes have been synthesized with these as bridging ligands (Zhang et al., 2007; Li et al., 2003). We attempted to synthesize a mixed bridged multi-nuclear CuII complex by using acetate and N,N-dimethylpyrazine-2-amine as bridging ligands. The title complex was obtained and here we report its crystal structure, (I), Fig. 1.

The unique CuII ion is in a slightly distorted square-pyramidal coordination geometry with atom N1 lying at the apex. Four acetate ligands coordinate to two symmetry-related CuII atoms, with a Cu1···Cu1i separation of 2.6326 (6) Å and inversion centre lies at the middle of the Cu1···Cu1i vector (symmetry code, (i): -x + 1, -y + 1, -z + 2) resulting in the formation of a binuclear complex. The title complex is similar to a reported binuclear CuII complex (Zhang et al., 2007) except the title complex exhibits a slightly shorter Cu—N bond and a slightly longer Cu—Cu distance.

Experimental

N,N-dimethylpyrazine-2-amine (0.0954 g, 0.0696 mmol) was dissolved in 10 ml methanol and it was added into 10 ml water solution containing copper acetate (0.1390 g, 0.696 mmol), and the mixed solution was stirred for a few minutes. The blue single crystals were obtained after the solution had been allowed to stand at room temperature for five months.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C)for methyl group and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for pyrazinyl H atoms.

Figures

Fig. 1.
The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Primed atoms are related by the symmetry operator (-x + 1, -y + 1, -z + 2).

Crystal data

[Cu2(C2H3O2)4(C6H9N3)2]Z = 1
Mr = 609.58F(000) = 314
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1052 (13) ÅCell parameters from 2730 reflections
b = 8.1775 (13) Åθ = 2.7–28.2°
c = 10.6534 (17) ŵ = 1.71 mm1
α = 67.826 (2)°T = 298 K
β = 80.013 (2)°Block, blue
γ = 87.328 (2)°0.68 × 0.41 × 0.31 mm
V = 643.84 (18) Å3

Data collection

Bruker SMART APEX CCD diffractometer2465 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.390, Tmax = 0.620k = −10→8
3494 measured reflectionsl = −12→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0576P)2 + 0.297P] where P = (Fo2 + 2Fc2)/3
2465 reflections(Δ/σ)max = 0.020
167 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2373 (3)0.6709 (3)0.9386 (3)0.0309 (5)
C20.0727 (3)0.7590 (4)0.9109 (3)0.0471 (7)
H2A0.09030.85780.82470.071*
H2B0.02730.79950.98320.071*
H2C−0.00430.67590.90720.071*
C30.6075 (3)0.7439 (3)1.0579 (3)0.0362 (6)
C40.6713 (4)0.8898 (4)1.0918 (4)0.0531 (8)
H4A0.72700.97921.00900.080*
H4B0.74870.84271.15480.080*
H4C0.57880.94061.13300.080*
C50.6480 (4)0.8180 (4)0.5613 (3)0.0480 (7)
H50.53510.84370.57680.058*
C60.7422 (4)0.9016 (4)0.4350 (3)0.0577 (9)
H60.69110.98560.36750.069*
C70.8757 (3)0.6637 (4)0.6357 (3)0.0367 (6)
H70.92560.58120.70480.044*
C80.9720 (3)0.7479 (4)0.5042 (3)0.0413 (6)
C91.2305 (5)0.8021 (6)0.3383 (4)0.0780 (12)
H9A1.17000.79800.26960.117*
H9B1.33700.74740.32940.117*
H9C1.24780.92290.32610.117*
C101.2205 (4)0.5823 (6)0.5770 (4)0.0647 (9)
H10A1.23740.63120.64300.097*
H10B1.32700.55640.53380.097*
H10C1.15380.47570.62280.097*
Cu10.57009 (3)0.57928 (4)0.87055 (3)0.02811 (13)
N10.7160 (3)0.6997 (3)0.6627 (2)0.0350 (5)
N20.9033 (4)0.8693 (4)0.4033 (3)0.0548 (7)
N31.1350 (3)0.7085 (4)0.4739 (3)0.0577 (7)
O10.4726 (3)0.3816 (3)0.8439 (2)0.0446 (5)
O20.7587 (2)0.4311 (3)0.94000 (19)0.0408 (4)
O30.6383 (2)0.7576 (3)0.9348 (2)0.0411 (4)
O40.3574 (2)0.7044 (2)0.83984 (19)0.0379 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0290 (12)0.0292 (11)0.0330 (13)−0.0015 (9)−0.0048 (10)−0.0099 (10)
C20.0300 (13)0.0478 (16)0.0536 (18)0.0026 (11)−0.0087 (12)−0.0076 (13)
C30.0276 (12)0.0386 (14)0.0479 (16)0.0033 (10)−0.0077 (11)−0.0221 (12)
C40.0561 (18)0.0498 (17)0.063 (2)−0.0056 (14)−0.0098 (15)−0.0309 (15)
C50.0421 (15)0.0538 (17)0.0360 (15)0.0115 (13)0.0022 (12)−0.0083 (13)
C60.064 (2)0.0578 (19)0.0297 (15)0.0184 (16)0.0014 (14)0.0023 (13)
C70.0354 (13)0.0425 (14)0.0271 (12)−0.0005 (11)0.0007 (10)−0.0099 (11)
C80.0405 (14)0.0440 (15)0.0341 (14)−0.0037 (11)0.0065 (11)−0.0139 (12)
C90.061 (2)0.088 (3)0.065 (2)−0.010 (2)0.0353 (19)−0.024 (2)
C100.0394 (17)0.088 (3)0.072 (2)0.0077 (16)−0.0050 (16)−0.039 (2)
Cu10.02545 (18)0.03205 (19)0.02278 (18)−0.00127 (12)0.00141 (12)−0.00789 (13)
N10.0349 (11)0.0380 (11)0.0270 (11)−0.0005 (9)0.0026 (9)−0.0096 (9)
N20.0591 (16)0.0529 (15)0.0328 (13)0.0057 (12)0.0109 (12)−0.0028 (11)
N30.0402 (14)0.0682 (18)0.0511 (16)0.0005 (12)0.0134 (12)−0.0163 (14)
O10.0521 (12)0.0447 (11)0.0411 (11)−0.0074 (9)−0.0005 (9)−0.0228 (9)
O20.0323 (9)0.0473 (11)0.0312 (10)0.0073 (8)0.0004 (7)−0.0048 (8)
O30.0438 (10)0.0409 (10)0.0390 (10)−0.0095 (8)−0.0003 (8)−0.0169 (8)
O40.0307 (9)0.0441 (10)0.0313 (9)0.0039 (7)−0.0032 (7)−0.0070 (8)

Geometric parameters (Å, °)

C1—O2i1.252 (3)C7—H70.9300
C1—O41.258 (3)C8—N21.342 (4)
C1—C21.507 (3)C8—N31.358 (4)
C2—H2A0.9600C9—N31.451 (4)
C2—H2B0.9600C9—H9A0.9600
C2—H2C0.9600C9—H9B0.9600
C3—O31.255 (3)C9—H9C0.9600
C3—O1i1.259 (3)C10—N31.447 (5)
C3—C41.506 (4)C10—H10A0.9600
C4—H4A0.9600C10—H10B0.9600
C4—H4B0.9600C10—H10C0.9600
C4—H4C0.9600Cu1—O31.9649 (18)
C5—N11.331 (4)Cu1—O11.9654 (19)
C5—C61.363 (4)Cu1—O21.9738 (18)
C5—H50.9300Cu1—O41.9756 (18)
C6—N21.331 (4)Cu1—N12.197 (2)
C6—H60.9300Cu1—Cu1i2.6326 (6)
C7—N11.321 (3)O1—C3i1.259 (3)
C7—C81.411 (4)O2—C1i1.252 (3)
O2i—C1—O4125.7 (2)H9A—C9—H9C109.5
O2i—C1—C2116.0 (2)H9B—C9—H9C109.5
O4—C1—C2118.3 (2)N3—C10—H10A109.5
C1—C2—H2A109.5N3—C10—H10B109.5
C1—C2—H2B109.5H10A—C10—H10B109.5
H2A—C2—H2B109.5N3—C10—H10C109.5
C1—C2—H2C109.5H10A—C10—H10C109.5
H2A—C2—H2C109.5H10B—C10—H10C109.5
H2B—C2—H2C109.5O3—Cu1—O1168.16 (8)
O3—C3—O1i125.6 (2)O3—Cu1—O289.93 (9)
O3—C3—C4117.4 (3)O1—Cu1—O290.44 (9)
O1i—C3—C4117.0 (2)O3—Cu1—O488.93 (8)
C3—C4—H4A109.5O1—Cu1—O488.32 (9)
C3—C4—H4B109.5O2—Cu1—O4168.35 (7)
H4A—C4—H4B109.5O3—Cu1—N194.74 (8)
C3—C4—H4C109.5O1—Cu1—N197.07 (8)
H4A—C4—H4C109.5O2—Cu1—N192.23 (8)
H4B—C4—H4C109.5O4—Cu1—N199.42 (8)
N1—C5—C6120.7 (3)O3—Cu1—Cu1i83.66 (6)
N1—C5—H5119.7O1—Cu1—Cu1i84.71 (6)
C6—C5—H5119.7O2—Cu1—Cu1i81.05 (6)
N2—C6—C5123.5 (3)O4—Cu1—Cu1i87.31 (5)
N2—C6—H6118.3N1—Cu1—Cu1i173.08 (6)
C5—C6—H6118.3C7—N1—C5117.8 (2)
N1—C7—C8121.3 (3)C7—N1—Cu1121.20 (18)
N1—C7—H7119.3C5—N1—Cu1120.88 (18)
C8—C7—H7119.3C6—N2—C8116.2 (2)
N2—C8—N3117.6 (3)C8—N3—C10121.5 (3)
N2—C8—C7120.4 (3)C8—N3—C9120.0 (3)
N3—C8—C7122.0 (3)C10—N3—C9118.4 (3)
N3—C9—H9A109.5C3i—O1—Cu1122.29 (17)
N3—C9—H9B109.5C1i—O2—Cu1126.74 (17)
H9A—C9—H9B109.5C3—O3—Cu1123.65 (17)
N3—C9—H9C109.5C1—O4—Cu1119.15 (16)
N1—C5—C6—N21.7 (6)O3—Cu1—O1—C3i−13.5 (5)
N1—C7—C8—N20.9 (4)O2—Cu1—O1—C3i78.2 (2)
N1—C7—C8—N3−178.1 (3)O4—Cu1—O1—C3i−90.2 (2)
C8—C7—N1—C50.3 (4)N1—Cu1—O1—C3i170.5 (2)
C8—C7—N1—Cu1−176.6 (2)Cu1i—Cu1—O1—C3i−2.7 (2)
C6—C5—N1—C7−1.5 (5)O3—Cu1—O2—C1i81.6 (2)
C6—C5—N1—Cu1175.3 (3)O1—Cu1—O2—C1i−86.6 (2)
O3—Cu1—N1—C785.5 (2)O4—Cu1—O2—C1i−2.8 (5)
O1—Cu1—N1—C7−95.3 (2)N1—Cu1—O2—C1i176.3 (2)
O2—Cu1—N1—C7−4.6 (2)Cu1i—Cu1—O2—C1i−2.0 (2)
O4—Cu1—N1—C7175.2 (2)O1i—C3—O3—Cu1−1.4 (4)
Cu1i—Cu1—N1—C79.2 (6)C4—C3—O3—Cu1178.70 (18)
O3—Cu1—N1—C5−91.3 (2)O1—Cu1—O3—C313.4 (5)
O1—Cu1—N1—C587.9 (2)O2—Cu1—O3—C3−78.4 (2)
O2—Cu1—N1—C5178.6 (2)O4—Cu1—O3—C390.0 (2)
O4—Cu1—N1—C5−1.6 (2)N1—Cu1—O3—C3−170.7 (2)
Cu1i—Cu1—N1—C5−167.6 (4)Cu1i—Cu1—O3—C32.6 (2)
C5—C6—N2—C8−0.4 (5)O2i—C1—O4—Cu13.5 (4)
N3—C8—N2—C6178.2 (3)C2—C1—O4—Cu1−176.12 (18)
C7—C8—N2—C6−0.8 (5)O3—Cu1—O4—C1−85.17 (19)
N2—C8—N3—C10178.6 (3)O1—Cu1—O4—C183.31 (19)
C7—C8—N3—C10−2.4 (5)O2—Cu1—O4—C1−0.7 (5)
N2—C8—N3—C92.7 (5)N1—Cu1—O4—C1−179.80 (18)
C7—C8—N3—C9−178.2 (3)Cu1i—Cu1—O4—C1−1.47 (18)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2807).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem 56, 869–875.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, S.-G., Liu, Q.-S. & Shi, J.-M. (2007). Acta Cryst. E63, m2082.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography