PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1236.
Published online 2009 May 7. doi:  10.1107/S1600536809016328
PMCID: PMC2969636

2-(Prop-2-en­yl)-1,2-benzisothia­zol-3(2H)-one 1,1-dioxide

Abstract

In the title compound, C10H9NO3S, the benzisothia­zole group is almost planar (with a maximum deviation of 1.61 Å). The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds, forming a chain of mol­ecules along b.

Related literature

For the synthesis of benzothia­zine and benzisothia­zol deriv­atives, see: Zia-ur-Rehman, Anwar & Ahmad (2006 [triangle]); Zia-ur-Rehman, Anwar, Ahmad & Siddiqui (2006 [triangle]); Siddiqui et al. (2007 [triangle]) Zia-ur-Rehman et al. (2009 [triangle]). For the biological activity of benzisothia­zols, see: Kapui et al. (2003 [triangle]); Liang et al. (2006 [triangle]). For related structures, see: Siddiqui, Ahmad, Siddiqui et al. (2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1236-scheme1.jpg

Experimental

Crystal data

  • C10H9NO3S
  • M r = 223.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1236-efi1.jpg
  • a = 7.2169 (8) Å
  • b = 7.8347 (7) Å
  • c = 10.3849 (12) Å
  • α = 105.530 (3)°
  • β = 91.586 (3)°
  • γ = 112.047 (3)°
  • V = 518.95 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.37 × 0.26 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 5460 measured reflections
  • 2342 independent reflections
  • 1728 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.118
  • S = 1.06
  • 2342 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016328/bt2942sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016328/bt2942Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer. MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042-120607-PS2–183.

supplementary crystallographic information

Comment

Besides being used as a sweetener, saccharin and its various derivatives are well known for their different type of biological activities e.g., it has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Kapui et al., 2003; Liang et al., 2006). N-alkyl derivatives of saccharin have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam and meloxicam.

As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2009; Siddiqui et al., 2007), we have in addition, worked on the synthesis of benzisothiazole derivatives. We herein report the crystal structure of the title compound (Scheme and figure 1). The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui, Ahmad, Siddiqui et al., 2007a; Siddiqui, Ahmad, Siddiqui et al., 2007b; Siddiqui, Ahmad, Siddiqui et al., 2007c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b (Figure 2).

Experimental

A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and allyl bromide (1.20 g, 10.0 mmoles) was stirred for a period of one hour at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitate in methanol afforded suitable crystals for X-ray studies.

Refinement

H atoms were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
Fig. 2.
Perspective view of the crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H9NO3SZ = 2
Mr = 223.24F(000) = 232
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2169 (8) ÅCell parameters from 2362 reflections
b = 7.8347 (7) Åθ = 3.1–27.3°
c = 10.3849 (12) ŵ = 0.30 mm1
α = 105.530 (3)°T = 296 K
β = 91.586 (3)°Needles, colourless
γ = 112.047 (3)°0.37 × 0.26 × 0.18 mm
V = 518.95 (10) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
graphiteθmax = 27.5°, θmin = 2.9°
[var phi] and ω scansh = −9→9
5460 measured reflectionsk = −10→6
2342 independent reflectionsl = −11→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1101P] where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.39784 (8)0.35030 (7)0.26041 (5)0.0536 (2)
O10.2640 (2)0.6659 (2)0.09710 (17)0.0646 (4)
O20.6073 (2)0.3953 (2)0.29080 (18)0.0759 (5)
O30.2677 (3)0.2648 (2)0.34679 (16)0.0726 (5)
N10.3652 (3)0.5452 (2)0.25013 (17)0.0515 (4)
C10.3079 (3)0.2289 (3)0.0897 (2)0.0450 (4)
C20.2602 (3)0.3453 (3)0.0270 (2)0.0431 (4)
C30.1889 (3)0.2789 (3)−0.1090 (2)0.0533 (5)
H30.15570.3555−0.15210.064*
C40.1684 (3)0.0951 (3)−0.1791 (2)0.0635 (6)
H40.12230.0479−0.27130.076*
C50.2147 (3)−0.0205 (3)−0.1155 (3)0.0645 (6)
H50.1983−0.1442−0.16560.077*
C60.2844 (3)0.0433 (3)0.0204 (2)0.0572 (6)
H60.3145−0.03470.06360.069*
C70.2931 (3)0.5357 (3)0.1224 (2)0.0463 (5)
C80.4052 (4)0.7114 (3)0.3697 (2)0.0642 (6)
H8A0.45910.82930.34430.077*
H8B0.50600.71630.43590.077*
C90.2176 (5)0.6993 (4)0.4312 (3)0.0823 (8)
H90.16060.59890.46830.099*
C100.1299 (5)0.8116 (5)0.4373 (3)0.0945 (9)
H10A0.18140.91410.40150.113*
H10B0.01340.79260.47770.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0584 (3)0.0538 (3)0.0598 (4)0.0253 (2)0.0088 (2)0.0306 (3)
O10.0772 (10)0.0506 (8)0.0818 (11)0.0342 (7)0.0108 (8)0.0319 (8)
O20.0616 (10)0.0850 (11)0.0897 (12)0.0328 (8)−0.0054 (9)0.0362 (10)
O30.0904 (12)0.0726 (10)0.0647 (10)0.0278 (9)0.0214 (9)0.0418 (9)
N10.0612 (10)0.0455 (9)0.0537 (10)0.0248 (8)0.0095 (8)0.0187 (8)
C10.0420 (10)0.0435 (9)0.0588 (12)0.0201 (8)0.0149 (9)0.0249 (9)
C20.0391 (10)0.0428 (9)0.0554 (11)0.0178 (8)0.0139 (8)0.0243 (9)
C30.0468 (11)0.0607 (12)0.0572 (13)0.0207 (9)0.0085 (9)0.0262 (10)
C40.0540 (13)0.0652 (14)0.0616 (14)0.0180 (11)0.0098 (11)0.0117 (11)
C50.0568 (13)0.0470 (12)0.0819 (17)0.0195 (10)0.0182 (12)0.0080 (11)
C60.0514 (12)0.0468 (11)0.0845 (17)0.0249 (9)0.0194 (11)0.0285 (11)
C70.0452 (10)0.0429 (10)0.0600 (12)0.0198 (8)0.0134 (9)0.0259 (9)
C80.0702 (15)0.0559 (12)0.0604 (14)0.0234 (11)0.0031 (11)0.0108 (11)
C90.111 (2)0.0722 (16)0.0749 (18)0.0451 (16)0.0323 (16)0.0258 (14)
C100.109 (2)0.098 (2)0.0787 (19)0.0495 (19)0.0176 (17)0.0177 (17)

Geometric parameters (Å, °)

S1—O21.4220 (16)C4—C51.379 (3)
S1—O31.4253 (15)C4—H40.9300
S1—N11.6596 (16)C5—C61.374 (3)
S1—C11.743 (2)C5—H50.9300
O1—C71.206 (2)C6—H60.9300
N1—C71.385 (3)C8—C91.495 (3)
N1—C81.467 (3)C8—H8A0.9700
C1—C61.382 (3)C8—H8B0.9700
C1—C21.384 (2)C9—C101.253 (4)
C2—C31.376 (3)C9—H90.9300
C2—C71.481 (3)C10—H10A0.9300
C3—C41.378 (3)C10—H10B0.9300
C3—H30.9300
O2—S1—O3117.16 (10)C6—C5—C4121.4 (2)
O2—S1—N1109.80 (9)C6—C5—H5119.3
O3—S1—N1109.80 (9)C4—C5—H5119.3
O2—S1—C1111.86 (10)C5—C6—C1116.9 (2)
O3—S1—C1112.76 (9)C5—C6—H6121.5
N1—S1—C192.73 (8)C1—C6—H6121.5
C7—N1—C8123.33 (17)O1—C7—N1123.46 (19)
C7—N1—S1115.04 (13)O1—C7—C2127.23 (19)
C8—N1—S1121.60 (14)N1—C7—C2109.31 (15)
C6—C1—C2122.1 (2)N1—C8—C9111.41 (19)
C6—C1—S1127.33 (16)N1—C8—H8A109.3
C2—C1—S1110.60 (14)C9—C8—H8A109.3
C3—C2—C1120.34 (18)N1—C8—H8B109.3
C3—C2—C7127.38 (17)C9—C8—H8B109.3
C1—C2—C7112.27 (17)H8A—C8—H8B108.0
C2—C3—C4117.8 (2)C10—C9—C8126.1 (3)
C2—C3—H3121.1C10—C9—H9116.9
C4—C3—H3121.1C8—C9—H9116.9
C3—C4—C5121.5 (2)C9—C10—H10A120.0
C3—C4—H4119.3C9—C10—H10B120.0
C5—C4—H4119.3H10A—C10—H10B120.0
O2—S1—N1—C7112.66 (16)C7—C2—C3—C4−179.51 (17)
O3—S1—N1—C7−117.16 (15)C2—C3—C4—C50.9 (3)
C1—S1—N1—C7−1.76 (15)C3—C4—C5—C6−0.4 (3)
O2—S1—N1—C8−69.00 (18)C4—C5—C6—C1−0.6 (3)
O3—S1—N1—C861.18 (18)C2—C1—C6—C51.2 (3)
C1—S1—N1—C8176.58 (16)S1—C1—C6—C5−178.53 (15)
O2—S1—C1—C669.07 (19)C8—N1—C7—O12.9 (3)
O3—S1—C1—C6−65.5 (2)S1—N1—C7—O1−178.81 (15)
N1—S1—C1—C6−178.31 (17)C8—N1—C7—C2−177.24 (16)
O2—S1—C1—C2−110.65 (14)S1—N1—C7—C21.1 (2)
O3—S1—C1—C2114.77 (14)C3—C2—C7—O1−0.5 (3)
N1—S1—C1—C21.96 (14)C1—C2—C7—O1−179.66 (19)
C6—C1—C2—C3−0.7 (3)C3—C2—C7—N1179.65 (18)
S1—C1—C2—C3179.07 (14)C1—C2—C7—N10.5 (2)
C6—C1—C2—C7178.58 (16)C7—N1—C8—C984.2 (3)
S1—C1—C2—C7−1.68 (19)S1—N1—C8—C9−94.0 (2)
C1—C2—C3—C4−0.4 (3)N1—C8—C9—C10−114.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.363.216 (3)153

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2942).

References

  • Bruker (2007). APEX2, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther 305, 1–9. [PubMed]
  • Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun 37, 767–773.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2006). Bull. Korean Chem. Soc 26, 1771–1775.
  • Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography